Skip to main content

Bode Plot Analysis of PRES and Novel PRESH Controller Interfaced with Three Phase GTSPPS

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1616))

Included in the following conference series:

  • 589 Accesses

Abstract

The presented research paper deals with design algorithm and its Analysis on BP (Bode Plot) of PRES and Novel PRESH (PRES + RESH) controller Interfaced with three phase GTSPPS (Grid-Tied Solar Photovoltaic Power System) and its simulation on MATLAB. Presently, for eliminating the harmonic from three phase SPPS, various filters and controllers have already been proposed but it either resulted in increase of computational load or made the system bulky. The proposed research paper will discuss the design procedure of two controller helpful in mitigating the THD of three phase SPPS near to 1% and thus satisfying the IEEE standard 519 and 1547. PRES controller is suitable in eliminating the THD when grid does not suffer any abnormal condition whereas Novel PRESH controller can be incorporated when grid suffers from abnormal condition. Further, the difference between two techniques will be discussed with its digital implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 2002 National Electrical Code. National Fire Protection Association, Inc., Quincy, MA (2002)

    Google Scholar 

  2. Althobaiti, Armstrong, M., Elgendy, M.A., Mulolani, F.: Three-phase grid connected PV inverters using the proportional resonance controller. In: 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, pp. 1–6 (2016)

    Google Scholar 

  3. Araujo, S.V., Zacharias, P., Mallwitz, R.: Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems. IEEE Trans. Ind. Electron. 57(9), 3118–3128 (Sep. 2010)

    Article  Google Scholar 

  4. Balaguer, I.J., Lei, Q., Yang, S., Supatti, U., Peng, F.Z.: Control for grid-connected and intentional islanding operations of distributed power generation. IEEE Trans. Ind. Electron. 58(1), 147–157 (2011)

    Article  Google Scholar 

  5. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (Oct. 2006)

    Article  Google Scholar 

  6. Bratcu, A., Munteanu, I., Bacha, S., Picault, D., Raison, B.: Cascaded dc–dc converter photovoltaic systems: power optimization issues. IEEE Trans. Ind. Electron. 58(2), 403–411 (2011)

    Article  Google Scholar 

  7. Cacciato, M., Consoli, A., Attanasio, R., Gennaro, F.: Soft-switching converter with HF transformer for grid-connected photovoltaic systems. IEEE Trans. Ind. Electron. 57(5), 1678–1686 (May 2010)

    Article  Google Scholar 

  8. Campanhol, L.B.G., Silva, S.A.O., Sampaio, L.P., Junior, A.A.O.: A grid-connected photovoltaic power system with active power injection, reactive power compensation and harmonic filtering. In: Proceedings of COBEP, pp. 642–649 (2013)

    Google Scholar 

  9. Castilla, M., Miret, J., Matas, J., Garcia de Vicuna, L., Guerrero, J.M.: Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonics compensators. IEEE Trans. Ind. Electron. 56(11), 4492–4501 (2009)

    Article  Google Scholar 

  10. Castilla, M., Miret, J., Matas, J., Garcia de Vicuna, L., Guerrero, J.M.: Linear current control scheme with series resonant harmonic compensator for single-phase grid-connected photovoltaic inverters. IEEE Trans. Ind. Electron. 55(7), 2724–2733 (2008)

    Article  Google Scholar 

  11. Cavalcanti, M.C., de Oliveira, K., C., Farias de A. M., Neves F. A., Azevedo G. M., and Camboim F. C.,: Modulation techniques to eliminate leakage currents in transformerless three-phase photovoltaic systems. IEEE Trans. Ind. Electron. 57(4), 1360–1368 (2010)

    Article  Google Scholar 

  12. Characteristics of the Utility Interface for Photovoltaic (PV) Systems, IEC61727, December 2004

    Google Scholar 

  13. Faiz, M.T., Khan, M.M., Jianming, X., Habib, S., Tang, H.: Double feed-forward compensation based true damping of Inductor-capacitor-Induxtor type grid tied lainverter. In: 2018 IEEE International Conference on Industrial Technology (ICIT), pp. 788–793 (2018)

    Google Scholar 

  14. Figueres, E., Garcerá, G., Sandia, J., González-Espin, F., Rubio, J.C.: Sensitivity study of the dynamics of three-phase photovoltaic inverters with an LCL grid filter. IEEE Trans. Ind. Electron. 56(3), 706–717 (2009)

    Article  Google Scholar 

  15. Guerrero, J.M., Vasquez, J.C., Matas, J., Garcia de Vicuna, L., Castilla, M.: Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)

    Article  Google Scholar 

  16. IEEE standard for interconnecting distributed resources with electric power systems. IEEE15471 (2008)

    Google Scholar 

  17. Jeong, H.-G., Kim, G.-S., Lee, K.-B.: Second-order harmonic reduction technique for photovoltaic power conditioning systems using a proportional-resonant controller. Energies 6, 79–96 (2013)

    Article  Google Scholar 

  18. He, J., Li, Y.W., Blaabjerg, F., Wang, X.: Active harmonic filtering using current-controlled, grid-connected DG units with closed-loop power control. IEEE Trans. Power Electron. 29(2), 642–653 (2013)

    Google Scholar 

  19. Kadri, R., Gaubert, J.P., Champenois, G.: An improved maximum power point tracking for photovoltaic grid-connected inverter based-on voltage oriented control. IEEE Trans. Ind. Electron. 58(1), 66–75 (2011)

    Article  Google Scholar 

  20. Kuo, Y.S., Lin, J.Y., Tang, J.C., Hsieh, J.G.: Lead-lag compensator design based on vector margin and steady-state error of the step response via particle swarm optimization. In: 2016 International Conference on Fuzzy Theory and Its Applications (iFuzzy), pp. 1–6 (2016)

    Google Scholar 

  21. Mai, Q., Shan, M., Liu, L., Guerrero, J.M.: A novel improved variable step-size incremental-resistance MPPT method for PV systems. IEEE Trans. Ind. Electron. 58(6), 2427–2434 (2011)

    Article  Google Scholar 

  22. Padula, A.S., Agnoletto, E.J., Neves, R.V.A., Magossi, R.F.Q., Machado, R.Q., Oliveira, V.A.: Partial harmonic current distortion mitigation in microgrids using proportional resonant controller. In: 2019 18th European Control Conference (ECC), Naples, Italy, pp. 435-440 (2019)

    Google Scholar 

  23. Prasad, P.S., Parimi, A.M.: Harmonic mitigation in grid connected and islanded microgrid via adaptive virtual impedance. In: 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, pp. 1–6 (2020)

    Google Scholar 

  24. Rahim, N.A., Chaniago, K., Selvaraj, J.: Single-phase sevenlevel grid-connected inverter for photovoltaic system. IEEE Trans. Ind. Electron. 58(6), 2435–2443 (2011)

    Article  Google Scholar 

  25. Rodríguez, P., Luna, A., Candela, I., Mujal, R., Teodorescu, R., Blaabjerg, F.: Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Trans. Ind. Electron. 58(1), 127–138 (2010)

    Article  Google Scholar 

  26. Salmeron, P., Litran, S.: Improvement of the electric power quality using series active and shunt passive filters. IEEE Trans. Power Delivery 25(2), 1058–1067 (2010)

    Article  Google Scholar 

  27. Shetty, D., Prabhu, N.: Ziegler-Nichols method based VAR current controller for static compensator. Energy Procedia 117, 543–550 (2017)

    Article  Google Scholar 

  28. da Silva, J.N., Filho, A.J.S., Fernandes, D.A., Tahim, A.P.N., da Silva, E.R.C., Costa, F.F.: A discrete current controller for 1-phase grid-tied inverters. In: 2017 Brazilian Power Electronics Conference (COBEP), pp. 1–6 (2017)

    Google Scholar 

  29. Trinh, Q., Lee, H.: An advanced current control strategy for three-phase shunt active power filters. IEEE Trans. Industr. Electron. 60(12), 5400–5410 (2013)

    Article  Google Scholar 

  30. Wang, L., Ertugrul, N., Kolhe, M.: Evaluation of died beat CC for grid tied converters. In: IEEE PES Innovative Smart Grid Technologies, pp. 1–7 (2012)

    Google Scholar 

  31. Yadav, U., Gupta, A.: Current harmonic mitigation in grid tied solar photovoltaic system via PRES. In: 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, pp. 1–5 (2020)

    Google Scholar 

  32. Yadav, U., Gupta, A., Ahuja Kr, R.: Robust control design procedure and simulation of pres controller having phase-locked loop (PLL) control technique in grid-tied converter. In: 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) yogakarta, Indonesia, pp. 445-450 (2020)

    Google Scholar 

  33. Yadav, U., Gupta, A., Ahuja, R.K.: Analysis of CPG control strategies using APC for single phase grid tied SPPS. Material Today Proceeding. https://doi.org/10.1016/j.matpr.2021.05.195, (https://www.sciencedirect.com/science/article/pii/S2214785321037718)

  34. Yadav, U., Gupta, A., Rai, H.K., Bhalla, D.K.: Mitigation of Harmonic Current in Grid-Connected Solar Power System. In: Muzammil, M., Chandra, A., Kankar, P.K., Kumar, H. (eds.) Recent Advances in Mechanical Engineering. LNME, pp. 605–610. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-8704-7_74

    Chapter  Google Scholar 

  35. Yuen, C., Oudalov, A., Timbus, A.: The provision of frequency control reserves from multiple microgrids. IEEE Trans. Ind. Electron. 58(1), 173–183 (2011)

    Article  Google Scholar 

  36. Zhou, K., Blaabjerg, F., Wang, D., Yang, Y.: Periodic control of PEC, IET (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadav, U., Gupta, A., Ahuja, R.K. (2022). Bode Plot Analysis of PRES and Novel PRESH Controller Interfaced with Three Phase GTSPPS. In: Sanfilippo, F., Granmo, OC., Yayilgan, S.Y., Bajwa, I.S. (eds) Intelligent Technologies and Applications. INTAP 2021. Communications in Computer and Information Science, vol 1616. Springer, Cham. https://doi.org/10.1007/978-3-031-10525-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10525-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10524-1

  • Online ISBN: 978-3-031-10525-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics