Skip to main content

Hyperparameter Optimisation of Artificial Intelligence for Digital REStoration of Cultural Heritages (AIRES-CH) Models

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

Artificial Intelligence for digital REStoration of Cultural Heritage (AIRES-CH) aims at building a web-based app for the digital restoration of pictorial artworks through Computer Vision technologies applied to physical imaging raw data.

In previous work [7], it was shown that it is possible to develop a multidimensional deep neural network capable of inferring the RGB image from an X-Ray Fluorescence raw data.

The developed network comprises two branches: a one-dimensional branch, which works pixel-by-pixel, and a two-dimensional branch, capable of performing image segmentation.

In this project, we report the results of the hyperparameter optimisation of both branches.

This research is part of the project AIRES-CH - Artificial Intelligence for digital REStoration of Cultural Heritage (CUP I95F21001120008) jointly funded by Tuscany Region (Progetto Giovani Sì) and INFN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For other Machine learning approaches in Cultural Heritage, see [9], and references therein.

  2. 2.

    The tensor \(\mathcal I_{i,j}\) contains, for each pixel (ij), the histogram of the counts in bins of the X photon energies. It is customary to convert the raw data into elemental maps by integrating the per-pixel energy spectra around the characteristic energy peak associated to each element [15, 19].

  3. 3.

    Which means each energy bin is \((38.5 - 0.5)\) KeV/500 = 0.076 KeV = 76 eV wide.

  4. 4.

    For more theoretical details, see [21]. Link to paper.

  5. 5.

    i.e., if \(\mathbb {W}\) indicates the individual layer weight matrix, \(\rho \) is the density of the eigenvalues of

    $$ \mathbb {X} = \frac{1}{N} \, \mathbb {W}^T \mathbb {W}. $$

    .

  6. 6.

    GitHub: https://github.com/CalculatedContent/WeightWatcher.

References

  1. Ahmetovic, M.: Multi-analytical approach for the study of a XVII century Florentine painting: complementarity and data-crossing of the results of non-invasive diagnostics aimed at attribution and conservation. Master’s thesis, University of Florence (2020)

    Google Scholar 

  2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework (2019). https://doi.org/10.48550/ARXIV.1907.10902, https://arxiv.org/abs/1907.10902

  3. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  4. Albertin, F., et al.: “Ecce Homo” by Antonello da Messina, from non-invasive investigations to data fusion and dissemination. Sci. Rep. 11(1), 15868 (2021). https://doi.org/10.1038/s41598-021-95212-2

  5. Alfeld, M.: MA-XRF for historical paintings: state of the art and perspective. Microscopy Microanalysis 26(S2), 72–75 (2020)

    Article  Google Scholar 

  6. Bochicchio, L., et al.: Chapter 7 “Art is Not Science”: a study of materials and techniques in five of Enrico Baj’s nuclear paintings. In: Sgamellotti, A. (ed.) Science and Art: The Contemporary Painted Surface, pp. 139–168. The Royal Society of Chemistry (2020). https://doi.org/10.1039/9781788016384-00139

  7. Bombini, A., Anderlini, L., dell’Agnello, L., Giacomini, F., Ruberto, C., Taccetti, F.: The AIRES-CH project: artificial Intelligence for digital REStoration of Cultural Heritages using physical imaging and multidimensional adversarial neural networks. Accepted for Publication on the ICIAP2021 Conference Proceedings (2021)

    Google Scholar 

  8. Bombini, A., et al.: CHNet cloud: an EOSC-based cloud for physical technologies applied to cultural heritages. In: GARR (ed.) Conferenza GARR 2021 - Sostenibile/Digitale. Dati e tecnologie per il futuro, vol. Selected Papers. Associazione Consortium GARR (2021). https://doi.org/10.26314/GARR-Conf21-proceedings-09

  9. Fiorucci, M., Khoroshiltseva, M., Pontil, M., Traviglia, A., Del Bue, A., James, S.: Machine learning for cultural heritage: a survey. Pattern Recogn. Lett. 133, 102–108 (2020). https://doi.org/10.1016/j.patrec.2020.02.017

    Article  Google Scholar 

  10. Gagliani, L.: Multi-technique investigations on a XIX century painting for the non-invasive characterization of visible and hidden materials and pictorial layers. Master’s thesis, University of Florence (2020)

    Google Scholar 

  11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  13. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. 36(4) (2017). https://doi.org/10.1145/3072959.3073659

  14. Kleynhans, T., Schmidt Patterson, C.M., Dooley, K.A., Messinger, D.W., Delaney, J.K.: An alternative approach to mapping pigments in paintings with hyperspectral reflectance image cubes using artificial intelligence. Heritage Sci. 8(1), 1–16 (2020). https://doi.org/10.1186/s40494-020-00427-7

    Article  Google Scholar 

  15. Knoll, G.F.: Radiation Detection and Measurement, 4 edn. Wiley, Hoboken (2010)

    Google Scholar 

  16. Kogou, S., Lee, L., Shahtahmassebi, G., Liang, H.: A new approach to the interpretation of XRF spectral imaging data using neural networks. X-Ray Spectrometry 50(4) (2020). https://doi.org/10.1002/xrs.3188

  17. Larsson, G., Maire, M., Shakhnarovich, G.: FractalNet: ultra-deep neural networks without residuals. CoRR abs/1605.07648 (2016)

    Google Scholar 

  18. Licciardi, G.A., Del Frate, F.: Pixel unmixing in hyperspectral data by means of neural networks. IEEE Trans. Geosci. Remote Sens. 49(11), 4163–4172 (2011). https://doi.org/10.1109/TGRS.2011.2160950

    Article  Google Scholar 

  19. Mandò, P.A., Przybyłowicz, W.J.: Particle-Induced X-Ray Emission (PIXE), pp. 1–48. American Cancer Society (2016). https://doi.org/10.1002/9780470027318.a6210.pub3, https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470027318.a6210.pub3

  20. Martin, C.H., Mahoney, M.W.: Heavy-tailed universality predicts trends in test accuracies for very large pre-trained deep neural networks (2019). https://doi.org/10.48550/ARXIV.1901.08278, https://arxiv.org/abs/1901.08278

  21. Martin, C.H., Mahoney, M.W.: Universality and Capacity Metrics in Deep Neural Networks (2019)

    Google Scholar 

  22. Martin, C.H., Mahoney, M.W.: Implicit self-regularization in deep neural networks: evidence from random matrix theory and implications for learning. J. Mach. Learn. Res. 22, 165:1–165:73 (2021)

    Google Scholar 

  23. Martin, C.H., Peng, T.S., Mahoney, M.W.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nat. Commun. 12(1), 4122 (2021)

    Google Scholar 

  24. Mazzinghi, A., et al.: MA-XRF for the characterisation of the painting materials and technique of the entombment of christ by Rogier van der Weyden. Appl. Sci. 11(13) (2021). https://doi.org/10.3390/app11136151

  25. van den Oord, A., et al.: WaveNet: a generative model for raw audio. CoRR abs/1609.03499 (2016)

    Google Scholar 

  26. Ricciardi, P., Mazzinghi, A., Legnaioli, S., Ruberto, C., Castelli, L.: The choir books of San Giorgio Maggiore in Venice: results of in depth non-invasive analyses. Heritage 2(2), 1684–1701 (2019). https://doi.org/10.3390/heritage2020103

    Article  Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. CoRR abs/1505.04597 (2015)

    Google Scholar 

  28. Ruberto, C., et al.: La rete CHNet a servizio di Ottavio Leoni: la diagnostica per la comprensione dei materiali da disegno. In: Leo S. Olschki editore, F. (ed.) Accademia toscana di scienze e lettere la colombaria. atti e memorie, vol. LXXXV (2020)

    Google Scholar 

  29. Ruberto, C., et al.: Imaging study of Raffaello’s La Muta by a portable XRF spectrometer. Microchem. J. 126, 63–69 (2016). https://doi.org/10.1016/j.microc.2015.11.037

    Article  Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  31. Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014), http://arxiv.org/abs/1409.4842

  32. Wang, M., Zhao, M., Chen, J., Rahardja, S.: Nonlinear unmixing of hyperspectral data via deep autoencoder networks. IEEE Geosci. Remote Sens. Lett. 16(9), 1467–1471 (2019). https://doi.org/10.1109/LGRS.2019.2900733

    Article  Google Scholar 

  33. Wang, Z., Simoncelli, E., Bovik, A.: Multiscale structural similarity for image quality assessment (2003). https://doi.org/10.1109/ACSSC.2003.1292216

  34. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  35. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2016)

    Google Scholar 

  36. Zhang, X., Sun, Y., Zhang, J., Wu, P., Jiao, L.: Hyperspectral unmixing via deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 15(11), 1755–1759 (2018). https://doi.org/10.1109/LGRS.2018.2857804

    Article  Google Scholar 

  37. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for neural networks for image processing. CoRR abs/1511.08861 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Bombini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bombini, A., Anderlini, L., dell’Agnello, L., Giacomini, F., Ruberto, C., Taccetti, F. (2022). Hyperparameter Optimisation of Artificial Intelligence for Digital REStoration of Cultural Heritages (AIRES-CH) Models. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13377. Springer, Cham. https://doi.org/10.1007/978-3-031-10536-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10536-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10535-7

  • Online ISBN: 978-3-031-10536-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics