Skip to main content

Semi-supervised Adaptive Method for Human Activities Recognition (HAR)

  • Conference paper
  • First Online:
Computer Information Systems and Industrial Management (CISIM 2022)

Abstract

Using sensors and mobile devices integrated with hardware and software tools for Human Recognition Activities (HAR), is a growing scientific field, the analysis based on this information have promising benefits to detect regular and irregular behaviors in individuals during their daily activities. In this study, the Van Kasteren dataset was used for the experimental stage, and it all data was processed using the data mining classification methods: Decision Trees (DT), Support Vector Machines (SVM) and Naïve Bayes (NB). These methods were applied during the training and validation processes with the proposed methodology, and the results obtained showed that all these three methods were successful to identify the cluster associated to the activities contained in the Van Kasteren dataset. The Support Vector Machines (SVM) method showed the best results with the evaluation metrics: True Positive Rate (TPR) 99.2%, False Positive Rate (FPR) 0.6%, precision (99.2%), coverage (99.2%) and F-Measure (98.8%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ladjailia, A., Bouchrika, I., Merouani, H.F., Harrati, N., Mahfouf, Z.: Human activity recognition via optical flow: decomposing activities into basic actions. Neural Comput. Appl. 32(21), 16387–16400 (2019). https://doi.org/10.1007/s00521-018-3951-x

    Article  Google Scholar 

  2. Banos, O., Damas, M., Pomares, H., Prieto, A., Rojas, I.: Daily living activity recognition based on statistical feature quality group selection. Expert Syst. Appl. 39(9), 8013–8021 (2012)

    Article  Google Scholar 

  3. Casale, P., Pujol, O., Radeva, P.: Human activity recognition from accelerometer data using a wearable device. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 289–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21257-4_36

    Chapter  Google Scholar 

  4. Calabria-Sarmiento, J.C., et al.: (2018). Software applications to health sector: a systematic review of literature (2018)

    Google Scholar 

  5. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)

    Google Scholar 

  6. Arifoglu, D., Bouchachia, A.: Activity recognition and abnormal behaviour detection with recurrent neural networks. Proc. Comput. Sci. 110, 86–93 (2017)

    Article  Google Scholar 

  7. Fergani, B.: Comparing HMM, LDA, SVM and Smote-SVM algorithms in classifying human activities. In: El Oualkadi, A., Choubani, F., El Moussati, A. (eds.) Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015. Lecture Notes in Electrical Engineering, vol. 381, pp. 639–644. Springer, Cham (2016)

    Google Scholar 

  8. Paul, P., George, T.: An effective approach for human activity recognition on smartphone. In: 2015 IEEE International Conference on Engineering and Technology (Icetech), pp. 1–3. IEEE, March 2015

    Google Scholar 

  9. Dao, M.S., Nguyen-Gia, T.A., Mai, V.C.: Daily human activities recognition using heterogeneous sensors from smartphones. Proc. Comput. Sci. 111, 323–328 (2017)

    Article  Google Scholar 

  10. Liu, Y., Nie, L., Liu, L., Rosenblum, D.S.: From action to activity: sensor-based activity recognition. Neurocomputing 181, 108–115 (2016)

    Article  Google Scholar 

  11. Concone, F., Gaglio, S., Lo Re, G., Morana, M.: Smartphone data analysis for human activity recognition. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017. LNCS, vol. 10640, pp. 58–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70169-1_5

    Chapter  Google Scholar 

  12. Fahad, L.G., Khan, A., Rajarajan, M.: Activity recognition in smart homes with self verification of assignments. Neurocomputing 149, 1286–1298 (2015)

    Article  Google Scholar 

  13. Manzi, A., Dario, P., Cavallo, F.: A human activity recognition system based on dynamic clustering of skeleton data. Sensors 17(5), 1100 (2017)

    Article  Google Scholar 

  14. Tran, D., Sorokin, A.: Human activity recognition with metric learning. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 548–561. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_42

    Chapter  Google Scholar 

  15. Robertson, N., Reid, I.: A general method for human activity recognition in video. Comput. Vis. Image Underst. 104(2–3), 232–248 (2006). ISSN 1077-3142. https://doi.org/10.1016/j.cviu.2006.07.006

  16. Balli, S., Sağbaş, E.A., Peker, M.: Human activity recognition from smart watch sensor data using a hybrid of principal component analysis and random forest algorithm. Meas. Control 52(1–2), 37–45 (2019)

    Article  Google Scholar 

  17. Ronao, C.A., Cho, S.B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)

    Article  Google Scholar 

  18. Tan, Y.E., Lo, C.C., Shieh, C.S., Miu, D., Horng, M.F.: Adaptive confidence evaluation scheme for periodic activity recognition in smart home environments. In: 2019 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pp. 1077–1081. IEEE, August 2019

    Google Scholar 

  19. Tahir, S.F., Fahad, L.G., Kifayat, K.: Key feature identification for recognition of activities performed by a smart-home resident. J. Ambient. Intell. Humaniz. Comput. 11(5), 2105–2115 (2019). https://doi.org/10.1007/s12652-019-01236-y

    Article  Google Scholar 

  20. van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: Activity recognition using semi-Markov models on real world smart home datasets. J. Ambient Intell. Smart Environ. 2(3), 311–325 (2010). https://doi.org/10.3233/AIS-2010-0070

    Article  Google Scholar 

  21. Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: Casas: a smart home in a box. Computer 46(7), 62–69 (2013). https://doi.org/10.1109/MC.2012.328

    Article  Google Scholar 

  22. Cook, D.J.: Learning setting-generalized activity mdoels for smart spaces. IEEE Intell. Syst. 99(1) (2011). https://doi.org/10.1109/MIS.2010.112

  23. Singla, G., Cook, D.J., Schmitter-Edgecombe, M.: Recognizing independent and joint activities among multiple residents in smart environments. J. Ambient. Intell. Humaniz. Comput. 1(1), 57–63 (2010). https://doi.org/10.1007/s12652-009-0007-1

    Article  Google Scholar 

  24. Chavarriaga, R., et al.: The Opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recogn. Lett. 34(15), 2033–2042 (2013). https://doi.org/10.1016/j.patrec.2012.12.014

    Article  Google Scholar 

  25. Roggen, D., et al.: Collecting complex activity data sets in highly rich networked sensor environments. In: Seventh International Conference on Networked Sensing Systems (2010). https://doi.org/10.1109/INSS.2010.5573462

  26. Lukowicz, P., et al.: Recording a complex, multi modal activity data set for context recognition. In: 23th International Conference on Architecture of Computing Systems (2010). http://www.opportunity-project.eu/challengeDataset. Accessed 3 July 2018

  27. Anguita, D., et al.: A public domain dataset for Human Activity Recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. ESANN 2013, Bruges, Belgium, pp. 437–442, April 2013

    Google Scholar 

  28. Ronao, C.A., Cho, S.: Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models. In: 2014 10th International Conference on Natural Computation, pp. 681–686 (2014). https://doi.org/10.1109/ICNC.2014.6975918

  29. Banos, O., et al.: mHealthDroid: a novel framework for agile development of mobile health applications. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 91–98. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_14

    Chapter  Google Scholar 

  30. Banos, O., et al.: Design, implementation and validation of a novel open framework for agile development of mobile health applications. BioMed. Eng. OnLine 14(S2:S6), 1–20 (2015)

    Google Scholar 

  31. Chetty, G., White, M., Akther, F.: Smart phone based data mining for human activity recognition. Proc. Comput. Sci. 46, 1181–1187 (2015)

    Article  Google Scholar 

  32. Keyvanpour, M.R., Zolfaghari, S.: Augmented feature-state sensors in human activity recognition. In: 2017 9th International Conference on Information and Knowledge Technology (IKT), pp. 71–75). IEEE, October 2017

    Google Scholar 

  33. Yamada, N., Sakamoto, K., Kunito, G., Yamazaki, K., Tanaka, S.: Human activity recognition based on surrounding things. In: Tomoya Enokido, L., Yan, B.X., Kim, D., Dai, Y., Yang, L.T. (eds.) EUC 2005. LNCS, vol. 3823, pp. 1–10. Springer, Heidelberg (2005). https://doi.org/10.1007/11596042_1

    Chapter  Google Scholar 

  34. Choi, J., Shin, D., Shin, D.: Ubiquitous Intelligent Sensing System for a Smart Home. In: Yeung, D.Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR/SPR 2006. LNCS, vol. 4109, pp. 322–330. Springer, Heidelberg (2006). https://doi.org/10.1007/11815921_35

    Chapter  Google Scholar 

  35. Ravi, D., Wong, C., Lo, B., Yang, G.Z.: Deep learning for human activity recognition: A resource efficient implementation on low-power devices. In: 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 71–76. IEEE, June 2016

    Google Scholar 

  36. Gilbert, A., Illingworth, J., Bowden, R.: Scale invariant action recognition using compound features mined from dense spatio-temporal corners. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 222–233. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_18

    Chapter  Google Scholar 

  37. Okkonen, M.A., Kellokumpu, V., Pietikäinen, M., Heikkilä, J.: A visual system for hand gesture recognition in human-computer interaction. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 709–718. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73040-8_72

    Chapter  Google Scholar 

  38. Ozer, B., Wolf, W., Akansu, A.N.: Human activity detection in MPEG sequences. In: Proceedings Workshop on Human Motion, Austin, Texas, USA, pp. 61–66 (2000). https://doi.org/10.1109/HUMO.2000.897372

  39. Zheng, H., Wang, H., Black, N.: Human activity detection in smart home environment with self-adaptive neural networks. In: 2008 IEEE International Conference on Networking, Sensing and Control, Sanya, pp1505–1510 (2008). https://doi.org/10.1109/ICNSC.2008.4525459

  40. Kaur, S.: Survey of different data clustering algorithms. Int. J. Comput. Sci. Mob. Comput. 5(5), 584–588 (2016)

    Google Scholar 

  41. Virdi, G., Madan, N.: Review on various enhancements in K means clustering algorithm (2018)

    Google Scholar 

  42. Du, W , Lin, H., Sun, J., Yu, B., Yang, H.: A new projection-based K-means initialization algorithm. In: Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, China (2016)

    Google Scholar 

  43. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 7, 881–892 (2002)

    Article  MATH  Google Scholar 

  44. Friedl, M.A., Brodley, C.E.: Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61(3), 399–409 (1997)

    Article  Google Scholar 

  45. Dai, W., Ji, W.: A mapreduce implementation of C4. 5 decision tree algorithm. Int. J. Database Theory Appl. 7(1), 49–60 (2014)

    Article  Google Scholar 

  46. Lausch, A., Schmidt, A., Tischendorf, L.: Data mining and linked open data—new perspectives for data analysis in environmental research. Ecol. Model. 295, 5–17 (2015)

    Article  Google Scholar 

  47. Daszykowski, M., Korzen, M., Krakowska, B., Fabianczyk, K.: Expert system for monitoring the tributyltin content in inland water samples. Chemom. Intell. Lab. Syst. 149, 123–131 (2015)

    Article  Google Scholar 

  48. Magerman, D.M.: Statistical decision-tree models for parsing. In: Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, pp. 276–283. Association for Computational Linguistics, June 1995

    Google Scholar 

  49. Zhao, Y., Zhang, Y.: Comparison of decision tree methods for finding active objects. Adv. Space Res. 41(12), 1955–1959 (2008)

    Article  Google Scholar 

  50. Suresh, K., Dillibabu, R.: Designing a machine learning based software risk assessment model using Naïve Bayes algorithm. TAGA J. 14, 3141–3147 (2018)

    Google Scholar 

  51. Naik, D.L., Kiran, R.: Naïve Bayes classifier, multivariate linear regression and experimental testing for classification and characterization of wheat straw based on mechanical properties. Ind. Crops Prod. 112, 434–448 (2018)

    Article  Google Scholar 

  52. Picard, R.W., et al.: Affective learning—a manifesto. BT Technol. J. 22(4), 253–269 (2004)

    Article  Google Scholar 

  53. Patil, T.R., Sherekar, S.S.: Performance analysis of Naive Bayes and J48 classification algorithm for data classification. Int. J. Comput. Sci. Appl. 6(2), 256–261 (2013)

    Google Scholar 

  54. O’Reilly, K.M.A., Mclaughlin, A.M., Beckett, W.S., Sime, P.J.: Asbestos-related lung disease. Am. Family Phys. 75(5), 683–688 (2007)

    Google Scholar 

  55. James, A., Abu-Mostafa, Y., Qiao, X.: Nowcasting recessions using the SVM machine learning algorithm. Available at SSRN 3316917 (2018)

    Google Scholar 

  56. Vapnik, V.: Statistical Learning Theory. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  57. Papageorgiou, C., Oren, M., Poggio, T.: A general framework for object detection. In: Proceedings of the International Conference on Computer Vision (1998)

    Google Scholar 

  58. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683

    Chapter  Google Scholar 

  59. Kim, Y., Ling, H.: Human activity classification based on micro-Doppler signatures using a support vector machine. IEEE Trans. Geosci. Remote Sens. 47(5), 1328–1337 (2009)

    Article  Google Scholar 

  60. Da Silva, F., Niedermeyer, E.: Electroencephalography: Basic Principles. Clinical Applications, and Related Fields. William & Wikins, Baltimore (1993)

    Google Scholar 

  61. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  62. Palechor, F.M., de la Hoz Manotas, A.: Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico. Data in brief 25, 104344 (2019)

    Article  Google Scholar 

  63. Ng, A.: Clustering with the k-means algorithm. Mach. Learn. (2012)

    Google Scholar 

  64. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in K-means clustering. Int. J. 1(6), 90–95 (2013)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported from the REMIND Project from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 734355.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabio Mendoza Palechor , Alexis De la Hoz Manotas or Diego Molina Estren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palechor, F.M., Vicario, E., Patara, F., De la Hoz Manotas, A., Estren, D.M. (2022). Semi-supervised Adaptive Method for Human Activities Recognition (HAR). In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2022. Lecture Notes in Computer Science, vol 13293. Springer, Cham. https://doi.org/10.1007/978-3-031-10539-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10539-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10538-8

  • Online ISBN: 978-3-031-10539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics