Skip to main content

Design of a Wearable Assistive System for Visually Impaired People

  • Conference paper
  • First Online:
Computer Information Systems and Industrial Management (CISIM 2022)

Abstract

At least 2.2 billion people are visually impaired, with the main problem being a lack of autonomy and safety when moving around the city. To solve those needs, a wearable assistive system for vision impairment people, with low cost and open-source applications, integrating machine learning and deep learning was developed. We used a mixed methodology, including semi-structured interviews with visually impaired people and specialists in visually impaired needs, including them both in the design process. This allowed us to have an understatement of the specific needs and to generate improvements in the design. The results are auspicious for the feasibility of this type of development, the main considerations and lessons learned are noted, leaving some opportunities for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization: World Report on Vision (2019)

    Google Scholar 

  2. Bourne, R., et al.: Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the global burden of disease study. Lancet Glob. Heal. 9, e130–e143 (2021). https://doi.org/10.1016/S2214-109X(20)30425-3

  3. Finsterer, J., Scorza, F.A., Scorza, C.A., Fiorini, A.C.: SARS-CoV-2 impairs vision. J. Neuro-Ophthalmology. 41, 166–169 (2021). https://doi.org/10.1097/WNO.0000000000001273

    Article  Google Scholar 

  4. Toro, M.D., et al.: COVID-19 outbreak and increased risk of amblyopia and epidemic myopia: Insights from EUROCOVCAT group. Eur. J. Ophthalmol. 32, 17–22 (2022). https://doi.org/10.1177/11206721211053175

    Article  Google Scholar 

  5. Shalaby, W.S., et al.: The impact of COVID-19 on individuals across the spectrum of visual impairment. Am. J. Ophthalmol. 227, 53–65 (2021). https://doi.org/10.1016/j.ajo.2021.03.016

    Article  Google Scholar 

  6. World Health Organization: Blindness and vision impairment, https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed 05 Jan 2022

  7. World Health Organization: International Classification of Diseases 11th Revision. https://icd.who.int/en

  8. Hernández Flores, M.: Ciegos conquistando la ciudad de México: vulnerabilidad y accesibilidad en un entorno discapacitante. Nueva Antropol. 25 (2012)

    Google Scholar 

  9. Galarce Muñoz, M.I., Pérez-Salas, C.P., Sirlopú, D.: Análisis Comparativo de la participación escolar y bienestar subjetivo en estudiantes con y sin discapacidad en chile. Psykhe (Santiago). 29, 1–16 (2020). https://doi.org/10.7764/psykhe.29.2.1444

    Article  Google Scholar 

  10. Aguilar Díaz, M.Á.: Centralidad de los sentidos. Encartes. 3, 29–55 (2020). https://doi.org/10.29340/en.v3n5.136

  11. Sandoval-Pillajo, L., Pusdá, M., Garrido, F., Herrera, E.: Sistema embebido para movilidad de personas con discapacidad visual. Rev. Ibérica Sist. e Tecnol. Informação. 19, 328–340 (2019)

    Google Scholar 

  12. Ministerio de Educación Española: Educación Inclusiva: Tiflotecnología. http://www.ite.educacion.es/formacion/materiales/129/cd/unidad_10/m10_tiflotecnologia.htm. Accessed 28 Dec 2021

  13. Riazi, A., Riazi, F., Yoosfi, R., Bahmeei, F.: Outdoor difficulties experienced by a group of visually impaired Iranian people. J. Curr. Ophthalmol. 28, 85–90 (2016). https://doi.org/10.1016/j.joco.2016.04.002

    Article  Google Scholar 

  14. Dunai, L., Lengua, I., Tortajada, I., Brusola, F.: Obstacle detectors for visually impaired people. In: International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp. 809–816 (2014)

    Google Scholar 

  15. Alvarado, J.D., Mosquera, V.H.: Sistema de detección de obstáculos para invidentes. Visión Electrónica, Algo Más que un Estado Sólido. 10, 7 (2016)

    Google Scholar 

  16. Jafri, R., Campos, R.L., Ali, S.A., Arabnia, H.R.: Visual and infrared sensor data-based obstacle detection for the visually impaired using the google project tango tablet development kit and the unity engine. IEEE Access. 6, 443–454 (2018). https://doi.org/10.1109/ACCESS.2017.2766579

    Article  Google Scholar 

  17. Gbenga, D.E., Shani, A.I., Adekunle, A.L.: Smart walking stick for visually impaired people using ultrasonic sensors and arduino. Int. J. Eng. Technol. 9, 3435–3447 (2017). https://doi.org/10.21817/ijet/2017/v9i5/170905302

  18. Filipe, V., Fernandes, F., Fernandes, H., Sousa, A., Paredes, H., Barroso, J.: Blind navigation support system based on microsoft kinect. Procedia Comput. Sci. 14, 94–101 (2012). https://doi.org/10.1016/j.procs.2012.10.011

    Article  Google Scholar 

  19. Yang, K., Wang, K., Lin, S., Bai, J., Bergasa, L.M., Arroyo, R.: Long-range traversability awareness and low-lying obstacle negotiation with realsense for the visually impaired. In: Proceedings of the 2018 International Conference on Information Science and System, pp. 137–141. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3209914.3209943

  20. Long, N., Wang, K., Cheng, R., Yang, K., Hu, W., Bai, J.: Assisting the visually impaired: multitarget warning through millimeter wave radar and RGB-depth sensors. J. Electron. Imaging. 28, 1 (2019). https://doi.org/10.1117/1.JEI.28.1.013028

    Article  Google Scholar 

  21. Agiwal, M., Kwon, H., Park, S., Jin, H.: A survey on 4G–5G dual connectivity: road to 5G implementation. IEEE Access. 9, 16193–16210 (2021). https://doi.org/10.1109/ACCESS.2021.3052462

    Article  Google Scholar 

  22. Zafarullah Noohani, M., Ullah Magsi, K.: Review of 5G technology: architecture, security and wide applications. Int. Res. J. Eng. Technol. 7, 3440–3471 (2020). https://doi.org/10.5281/zenodo.3842353

    Article  Google Scholar 

  23. Araya, S., et al.: Design of a system to support certification management with an adaptive architecture. In: 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2021). https://doi.org/10.23919/CISTI52073.2021.9476390

  24. Nagarajan, A., Sindhuja, K., Balamurugan, C.R.: Smart glass with voice recognition and visual processing facility for visually imparied people. SEEE Digib. Eng. Technol. 1 (2018)

    Google Scholar 

  25. Vasquez Salazar, R.D., Cardona Mesa, A.A.: Dispositivos de asistencia para la movilidad en personas con discapacidad visual: una revisión bibliográfica. Rev. Politécnica. 15, 107–116 (2019). https://doi.org/10.33571/rpolitec.v15n28a10

  26. Esparza-Maldonado, A., Margain-Fuentes, L., Álvarez-Rodríguez, F., Benítez-Guerrero, E.: Desarrollo y evaluación de un sistema Interactivo para personas con discapacidad visual. TecnoLógicas. 21, 149–157 (2018)

    Article  Google Scholar 

  27. Márquez-Olivera, M., Juárez-Gracia, A.-G., Hernández-Herrera, V., Argüelles-Cruz, A.-J., López-Yáñez, I.: System for face recognition under different facial expressions using a new associative hybrid model amαβ-knn for people with visual impairment or prosopagnosia. Sensors. 19, 578 (2019). https://doi.org/10.3390/s19030578

    Article  Google Scholar 

  28. Escaida Villalobos, I., Jara Valdés, P., Letzkus Palavecino, M.: Mejora de procesos productivos mediante lean manufacturing. Trilogía. 28, 26–55 (2016)

    Google Scholar 

  29. Khalid, L.: Software Architecture for Business. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-13632-1

  30. Corbetta, P.: Metodología y Técnicas de Investigación Social. McGraw-Hill, Madrid (2007)

    Google Scholar 

  31. Solanki, K., Pittalia, P.: Review of face recognition techniques. Int. J. Comput. Appl. 133, 20–25 (2016)

    Google Scholar 

  32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  33. Fan, K., Baek, S.J.: A robust proposal generation method for text lines in natural scene images. Neurocomputing 304, 47–63 (2018). https://doi.org/10.1016/j.neucom.2018.03.041

    Article  Google Scholar 

  34. Ahmad, N.S., Boon, N.L., Goh, P.: Multi-sensor obstacle detection system via model-based state-feedback control in smart cane design for the visually challenged. IEEE Access. 6, 64182–64192 (2018). https://doi.org/10.1109/ACCESS.2018.2878423

    Article  Google Scholar 

  35. Hevner, A., Chatterjee, S.: Design Research in Information Systems. Springer US, Boston, MA (2010). https://doi.org/10.1007/978-1-4419-5653-8

  36. Fundacion Auna: Las Personas con Discapacidad Frente a las Tecnologías de la Información y las Comunicaciones en España. Fundación Auna-Ministerio de Trabajo de Asuntos Sociales, Madrid (2003)

    Google Scholar 

  37. Schrott, H.: Diseñar para los discapacitados. Rev. la OMPI. 5, 32 (2009)

    Google Scholar 

  38. López Delgado, A., Olmedo, E., Tadeu, P., Fernández Batanero, J.M.: Propuesta de las condiciones de las Aplicaciones móviles, para la construcción de un Entorno de Accesibilidad Personal para usuarios con discapacidad visual en las Smart Cities. Aula Abierta. 48, 193 (2019). https://doi.org/10.17811/rifie.48.2.2019.193-202

  39. IEEE: Standard Glossary of Software Engineering Terminology (Std 610.12–1990). IEEE (1990)

    Google Scholar 

  40. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4203–4212. IEEE (2018). https://doi.org/10.1109/CVPR.2018.00442

  41. Sharma, S., Bhatt, M., Sharma, P.: Face Recognition system using machine learning algorithm. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 1162–1168. IEEE (2020). https://doi.org/10.1109/ICCES48766.2020.9137850

  42. Zhao, Y., Wu, S., Reynolds, L., Azenkot, S.: A Face recognition application for people with visual impairments. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–14. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3173574.3173789

  43. Cardillo, E., et al.: An electromagnetic sensor prototype to assist visually impaired and blind people in autonomous walking. IEEE Sens. J. 18, 2568–2576 (2018). https://doi.org/10.1109/JSEN.2018.2795046

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by University of Bio-Bio grant number 2060222 IF/R and 2160277 GI/EF. And the Research Department (VRI) of Universidad Andres Bello grant number DI-12-20/REG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Reyes-Rogget .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He-Astudillo, Y. et al. (2022). Design of a Wearable Assistive System for Visually Impaired People. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2022. Lecture Notes in Computer Science, vol 13293. Springer, Cham. https://doi.org/10.1007/978-3-031-10539-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10539-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10538-8

  • Online ISBN: 978-3-031-10539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics