Skip to main content

Users’ Socio-economic Factors to Choose Electromobility for Future Smart Cities

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

Recently, governments worldwide have sought solutions on how to lower carbon emissions. One of the more preferable options is the daily use of electromobility for various types of transportation. Clearly, reforming the different kinds of urban mobility is a far from simple task for policymakers; and from the perspective of users, there are many socioeconomic factors that are responsible. A preliminary literature search was conducted into the issues related to environmental protection, consumer awareness and knowledge of e-mobility, and purchasing behaviour. We have focused on these factors to take advantage of the usefulness of electromobility and provide a holistic overview, which will ultimately be the impetus for developing future smart cities. The study results may be a good base from which to build future discussions regarding the need for bottom-up analysis of e-mobility demand and standardisation, whilst taking into consideration the interests of various communities, including individual users, policymakers, and other industry-related stakeholders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jabeen, F., Olaru, D., Smith, B., Braunl, T., Speidel, S.: Acceptability of electric vehicles: findings from a driver survey. In: Proceedings of 35th Australasian Transport Research Forum (ATRF), pp. 1–15, Perth, Australia (2012). https://trid.trb.org/view/1224115

  2. Lioutas, V., Adamos, G., Nathanail, E.: How ready are Greek consumers to use electric vehicles? In: Nathanail, E.G., Adamos, G., Karakikes, I. (eds.) CSUM 2020. AISC, vol. 1278, pp. 760–769. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61075-3_74

    Chapter  Google Scholar 

  3. Marie R.B., Dale, H., Nic, L.: Update on electric vehicle uptake in European cities. In: International Council on Clean Transportation, Working Paper 2021-37, pp. 1–18 (2021). https://theicct.org/publication/update-on-electric-vehicle-uptake-in-european-cities/. Accessed 13 Mar 2022

  4. If you build it, they will come: Lessons from the first decade of electric vehicles. https://blogs.worldbank.org/transport/if-you-build-it-they-will-come-lessons-first-decade-electric-vehicles. Accessed 13 Mar 2022

  5. Global EV sales for 2021. https://www.ev-volumes.com/. Accessed 13 Mar 2022

  6. Sreeram, K., Preetha, P.K., Pooranchandran, P.: Electric vehicle scenario in India: roadmap, challenges, and opportunities. In: Proceedings of IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, pp. 1–7 (2019). https://doi.org/10.1109/ICECCT.2019.8869479

  7. Ona, E., Suzanna, L.: Barriers to widespread adoption of electric vehicles: an analysis of consumer attitudes and perceptions. Energy Policy 48, 717–729 (2012). https://doi.org/10.1016/j.enpol.2012.06.009

    Article  Google Scholar 

  8. Ghazale, H., Mohammad, K., Shahidehpour, M.: Accelerating the global adoption of electric vehicles: barriers and drivers. Electr. J. 28(10), 53–68 (2015). https://doi.org/10.1016/j.tej.2015.11.011

    Article  Google Scholar 

  9. Sun, X.-H., Yamamoto, T., Morikawa, T.: Charge timing choice behavior of battery electric vehicle users. Transp. Res. Part D Transp. Environ. 37, 97–107 (2015). https://doi.org/10.1016/j.trd.2015.04.007

    Article  Google Scholar 

  10. Levinson, R.S., West, T.H.: Impact of public electric vehicle charging infrastructure. Transp. Res. Part D Transp. Environ. 64, 158–177 (2018). https://doi.org/10.1016/j.trd.2017.10.006

    Article  Google Scholar 

  11. Funke, S.Á., Sprei, F., Gnann, T., Plötz, P.: How much charging infrastructure do electric vehicles need? A review of the evidence and international comparison. Transp. Res. Part D Transp. Environ. 77, 224–242 (2019). https://doi.org/10.1016/j.trd.2019.10.024

    Article  Google Scholar 

  12. Rudolph, C.: How may incentives for electric cars affect purchase decisions? Transp. Policy 52, 113–120 (2016). https://doi.org/10.1016/j.tranpol.2016.07.014

    Article  Google Scholar 

  13. Bjerkan, K.Y., Nørbech, T.E., Nordtømme, M.E.: Incentives for promoting battery electric vehicle (BEV) adoption in Norway. Transp. Res. Part D Transp. Environ. 43, 169–180 (2016). https://doi.org/10.1016/j.trd.2015.12.002

    Article  Google Scholar 

  14. Raj, N., Suri, M., Deepa, K.: Integration of battery charging and swapping using metaheuristics: a review. In: Tomar, A., Malik, H., Kumar, P., Iqbal, A. (eds.) Machine Learning, Advances in Computing, Renewable Energy and Communication. LNEE, vol. 768, pp. 247–258. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2354-7_23

    Chapter  Google Scholar 

  15. Jatschka, T., Oberweger, F.F., Rodemann, T., Raidl, G.R.: Distributing battery swapping stations for electric scooters in an urban area. In: Olenev, N., Evtushenko, Y., Khachay, M., Malkova, V. (eds.) OPTIMA 2020. LNCS, vol. 12422, pp. 150–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62867-3_12

    Chapter  Google Scholar 

  16. Campisi, T., Ticali, D., Ignaccolo, M., Tesoriere, G., Inturri, G., Torrisi, V.: Factors influencing the implementation and deployment of e-vehicles in small cities: a preliminary two-dimensional statistical study on user acceptance. Transp. Res. Procedia 62, 333–340 (2022). https://doi.org/10.1016/j.trpro.2022.02.042

    Article  Google Scholar 

  17. Bühler, F., Cocron, P., Neumann, I., Franke, T., Krems, J.F.: Is EV experience related to EV acceptance? Results from a German field study. Transp. Res. Part F Traffic Psychol. Behav. 25, 34–49 (2014). https://doi.org/10.1016/j.trf.2014.05.002

    Article  Google Scholar 

  18. Hackbarth, A., Madlener, R.: Consumer preferences for alternative fuel vehicles: a discrete choice analysis. Transp. Res. Part D: Transp. Environ. 25, 5–17 (2013). https://doi.org/10.1016/j.trd.2013.07.002

    Article  Google Scholar 

  19. Kaya, Ö., Alemdar, K.D., Campisi, T., Tortum, A., Çodur, M.K.: The development of decarbonisation strategies: a three-step methodology for the suitable analysis of current EVCS locations applied to Istanbul, Turkey. Energies 14(10), 2756 (2021). https://doi.org/10.3390/en14102756

    Article  Google Scholar 

  20. Campisi, T., Cocuzza, E., Ignaccolo, M., Inturri, G., Torrisi, V.: Exploring the factors that encourage the spread of EV-DRT into the sustainable urban mobility plans. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12953, pp. 699–714. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86976-2_48

    Chapter  Google Scholar 

  21. Acampa, G., Campisi, T., Grasso, M., Marino, G., Torrisi, V.: Exploring European strategies for the optimization of the benefits and cost-effectiveness of private electric mobility. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12953, pp. 715–729. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86976-2_49

    Chapter  Google Scholar 

  22. Hanson, S.: Gender and mobility: new approaches for informing sustainability. Gend. Place Cult. 17(1), 5–23 (2010). https://doi.org/10.1080/09663690903498225

    Article  MathSciNet  Google Scholar 

  23. Sovacool, B.K., Kester, J., Noel, L., de Rubens, G.Z.: The demographics of decarbonizing transport: the influence of gender, education, occupation, age, and household size on electric mobility preferences in the Nordic region. Glob. Environ. Chang. 52, 86–100 (2018). https://doi.org/10.1016/j.gloenvcha.2018.06.008

    Article  Google Scholar 

  24. Caperello, N., TyreeHageman, J., Kurani, K.: Engendering the future of electric vehicles: conversations with men and women. In: Proceedings of 5th International Conference on Women’s Issues in Transportation (WIIT), Paris, France, pp. 427–437 (2014). https://escholarship.org/uc/item/4fv7x1qv

  25. Liao, F., Molin, E., van Wee, B.: Consumer preferences for electric vehicles: a literature review. Transp. Rev. 37(3), 252–275 (2017). https://doi.org/10.1080/01441647.2016.1230794

    Article  Google Scholar 

  26. Higgins, C.D., Mohamed, M., Ferguson, M.R.: Size matters: how vehicle body type affects consumer preferences for electric vehicles. Transp. Res. Part A Policy Pract. 100, 182–201 (2017). https://doi.org/10.1016/j.tra.2017.04.014

    Article  Google Scholar 

  27. Patel, A.R., Trivedi, G., Vyas, D., Mihaita, A.S., Padmanaban, S.: Framework for user-centered access to electric charging facilities via energy-trading blockchain. In: Proceedings of 24th International Symposium on Wireless Personal Multimedia Communications (WPMC), Okayama, Japan, pp. 1–6 (2021). https://doi.org/10.1109/WPMC52694.2021.9700475

  28. Anderson, J.E., Lehne, M., Hardinghaus, M.: What electric vehicle users want: real-world preferences for public charging infrastructure. Int. J. Sustain. Transp. 12(5), 341–352 (2018). https://doi.org/10.1080/15568318.2017.1372538

    Article  Google Scholar 

  29. Vongurai, R.: Factors affecting customer brand preference toward electric vehicle in Bangkok, Thailand. J. Asian Financ. Econ. Bus. 7(8), 383–393 (2020). https://doi.org/10.13106/jafeb.2020.vol7.no8.383

  30. Schlüter, J., Weyer, J.: Car sharing as a means to raise acceptance of electric vehicles: an empirical study on regime change in automobility. Transport. Res. F Traffic Psychol. Behav. 60, 185–201 (2019). https://doi.org/10.1016/j.trf.2018.09.005

    Article  Google Scholar 

  31. Tiziana, C., Matteo, I., Giovanni, T., Giuseppe, I., Vincenza, T.: The evaluation of car-sharing to raise acceptance of electric vehicles: evidences from an Italian survey among university students. SAE Technical Paper, 2020-24-0021, pp. 1–10 (2020). https://doi.org/10.4271/2020-24-0021

  32. Jensen, A.F., Cherchi, E., Mabit, S.L.: On the stability of preferences and attitudes before and after experiencing an electric vehicle. Transp. Res. Part D Transp. Environ. 25, 24–32 (2013). https://doi.org/10.1016/j.trd.2013.07.006

    Article  Google Scholar 

  33. Roberson, L.A., Helveston, J.P.: Electric vehicle adoption: can short experiences lead to big change? Environ. Res. Lett. 15(9), 0940c3 (2020). https://doi.org/10.1088/1748-9326/aba715

    Article  Google Scholar 

  34. He, L., Chen, W., Conzelmann, G.: Impact of vehicle usage on consumer choice of hybrid electric vehicles. Transp. Res. Part D Transp. Environ. 17(3), 208–214 (2012). https://doi.org/10.1016/j.trd.2011.11.005

    Article  Google Scholar 

  35. Kongklaew, C., et al.: Barriers to electric vehicle adoption in Thailand. Sustainability 13(22), 12839 (2021). https://doi.org/10.3390/su132212839

    Article  Google Scholar 

  36. Javid, R.J., Nejat, A.: A comprehensive model of regional electric vehicle adoption and penetration. Transp. Policy 54, 30–42 (2017). https://doi.org/10.1016/j.tranpol.2016.11.003

    Article  Google Scholar 

  37. Bansal, P., Kumar, R.R., Raj, A., Dubey, S., Graham, D.J.: Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles. Energy Econ. 100, 105340 (2021). https://doi.org/10.1016/j.eneco.2021.105340

    Article  Google Scholar 

  38. Anthony Jnr., B.: Integrating electric vehicles to achieve sustainable energy as a service business model in smart cities. Front. Sustain. Cities 3, 1–12 (2021). https://doi.org/10.3389/frsc.2021.685716

    Article  Google Scholar 

  39. Kotilainen, K., Mäkinen, S.J., Valta, J.: Sustainable electric vehicle - prosumer framework and policy mix. In: 2017 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), Auckland, New Zealand, pp. 1–6 (2017). https://doi.org/10.1109/ISGT-Asia.2017.8378406

  40. Rasouli, S., Timmermans, H.: Influence of social networks on latent choice of electric cars: a mixed logit specification using experimental design data. Netw. Spat. Econ. 16(1), 99–130 (2016). https://doi.org/10.1007/s11067-013-9194-6

    Article  MathSciNet  Google Scholar 

  41. Jung Moon, S.: Integrating diffusion of innovations and theory of planned behavior to predict intention to adopt electric vehicles. Int. J. Bus. Manage. 15(11), 88–103 (2020). https://doi.org/10.5539/ijbm.v15n11p88

    Article  Google Scholar 

  42. Ye, F., Kang, W., Li, L., Wang, Z.: Why do consumers choose to buy electric vehicles? A paired data analysis of purchase intention configurations. Transp. Res. Part A Policy Pract. 147, 14–27 (2021). https://doi.org/10.1016/j.tra.2021.02.014

    Article  Google Scholar 

  43. Febransyah, A.: Predicting purchase intention towards battery electric vehicles: a case of Indonesian market. World Electr. Veh. J. 12(4), 240 (2021). https://doi.org/10.3390/wevj12040240

    Article  Google Scholar 

  44. Irfan, M., Ahmad, M.: Relating consumers’ information and willingness to buy electric vehicles: does personality matter? Transp. Res. Part D Transp. Environ. 100, 103049 (2021). https://doi.org/10.1016/j.trd.2021.103049

    Article  Google Scholar 

  45. Lashari, Z.A., Ko, J., Jang, J.: Consumers’ intention to purchase electric vehicles: influences of user attitude and perception. Sustainability 13(12), 6778 (2021). https://doi.org/10.3390/su13126778

    Article  Google Scholar 

  46. Lee, R., Brown, S.: Social & locational impacts on electric vehicle ownership and charging profiles. Energy Rep. 7, 42–48 (2021). https://doi.org/10.1016/j.egyr.2021.02.057

    Article  Google Scholar 

  47. Krause, R.M., Carley, S.R., Lane, B.W., Graham, J.D.: Perception and reality: public knowledge of plug-in electric vehicles in 21 U.S. cities. Energy Policy 63, 433–440 (2013). https://doi.org/10.1016/j.enpol.2013.09.018

    Article  Google Scholar 

  48. Verma, M., Verma, A., Khan, M.: Factors influencing the adoption of electric vehicles in Bengaluru. Transp. Dev. Econ. 6(2), 1–10 (2020). https://doi.org/10.1007/s40890-020-0100-x

    Article  Google Scholar 

  49. Smith, B., Olaru, D., Jabeen, F., Greaves, S.: Electric vehicles adoption: environmental enthusiast bias in discrete choice models. Transp. Res. Part D Transp. Environ. 51, 290–303 (2017). https://doi.org/10.1016/j.trd.2017.01.008

    Article  Google Scholar 

  50. Debnath, R., Bardhan, R., Reiner, D.M., Miller, J.R.: Political, economic, social, technological, legal and environmental dimensions of electric vehicle adoption in the United States: a social-media interaction analysis. Renew. Sustain. Energy Rev. 152, 111707 (2021). https://doi.org/10.1016/j.rser.2021.111707

    Article  Google Scholar 

  51. Sovacool, B.K., Kester, J., Noel, L., de Rubens, G.Z.: Income, political affiliation, urbanism and geography in stated preferences for electric vehicles (EVs) and vehicle-to-grid (V2G) technologies in Northern Europe. J. Transp. Geogr. 78, 214–229 (2019). https://doi.org/10.1016/j.jtrangeo.2019.06.006

    Article  Google Scholar 

  52. Ensslen, A., Paetz, A.-G., Babrowski, S., Jochem, P., Fichtner, W.: On the road to an electric mobility mass market—how can early adopters be characterized? In: Fornahl, D., Hülsmann, M. (eds.) Markets and Policy Measures in the Evolution of Electric Mobility. LNM, pp. 21–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24229-3_3

    Chapter  Google Scholar 

  53. McCoy, D., Lyons, S.: Consumer preferences and the influence of networks in electric vehicle diffusion: an agent-based microsimulation in Ireland. Energy Res. Soc. Sci. 3, 89–101 (2014). https://doi.org/10.1016/j.erss.2014.07.008

    Article  Google Scholar 

  54. Rastogi, A., Thomas, R.G., Digalwar, A.K.: Identification and analysis of social factors responsible for adoption of electric vehicles in India. Curr. Sci. 121(9), 1180–1187 (2021). https://doi.org/10.18520/cs/v121/i9/1180-1187

    Article  Google Scholar 

  55. Kenneth, N.J.J., Logenthiran, T.: A novel concept for calculating electricity price for electrical vehicles. In: Proceedings of 2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Bangalore, India, pp. 1–6 (2017). https://doi.org/10.1109/APPEEC.2017.8308963

  56. Nour, M., Said, S.M., Ali, A., Farkas, C.: Smart charging of electric vehicles according to electricity price. In: Proceedings of 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, pp. 432–437 (2019). https://doi.org/10.1109/ITCE.2019.8646425

  57. Kämpfe, B., et al.: Preferences and perceptions of bidirectional charging from a customer’s perspective – a literature review and qualitative approach. In: Liebl, J. (ed.) Electrified Mobility 2019: Including Grid Integration of Electric Mobility, pp. 177–191. Springer, Wiesbaden (2022). https://doi.org/10.1007/978-3-658-32471-1_16

    Chapter  Google Scholar 

  58. Hagman, J., Ritzén, S., Stier, J.J., Susilo, Y.: Total cost of ownership and its potential implications for battery electric vehicle diffusion. Res. Transp. Bus. Manage. 18, 11–17 (2016). https://doi.org/10.1016/j.rtbm.2016.01.003

    Article  Google Scholar 

  59. Vibhor, T., Paulus, A., Dilum, D.: Public attitudes towards electric vehicle adoption using structural equation modelling. In: Proceedings of 2019 World Conference on Transport Research (WCTR), Mumbai, India, pp. 1615–1634 (2019). https://doi.org/10.1016/j.trpro.2020.08.203

  60. van Heuveln, K., Ghotge, R., Annema, J.A., van Bergen, E., van Wee, B., Pesch, U.: Factors influencing consumer acceptance of vehicle-to-grid by electric vehicle drivers in the Netherlands. Travel Behav. Soc. 24, 34–45 (2021). https://doi.org/10.1016/j.tbs.2020.12.008

    Article  Google Scholar 

  61. Lee, R., Brown, S.: Evaluating the role of behavior and social class in electric vehicle adoption and charging demands. iScience 24(8), 102914 (2021). https://doi.org/10.1016/j.isci.2021.102914

    Article  Google Scholar 

  62. Daniel, F., Filip, C., Maria, S.R., Constantin, F.: New mobile charging station for urban and resort areas. In: Proceedings of 2019 Electric Vehicles International Conference (EV), Bucharest, Romania, pp. 1–6 (2019). https://doi.org/10.1109/EV.2019.8892866

  63. Abdullah-Al-Nahid, S., Khan, T.A., Taseen, M.A., Aziz, T.: A consumer-friendly electric vehicle charging scheme for residential consumers. In: Proceedings of 2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, pp. 893–897 (2020). https://doi.org/10.1109/SGES51519.2020.00164

  64. Broadbent, G., Metternicht, G., Drozdzewski, D.: An analysis of consumer incentives in support of electric vehicle uptake: an Australian case study. World Electr. Veh. J. 10(1), 11 (2019). https://doi.org/10.3390/wevj10010011

    Article  Google Scholar 

  65. Wee, S., Coffman, M., La Croix, S.: Do electric vehicle incentives matter? Evidence from the 50 U.S. states. Res. Policy 47(9), 1601–1610 (2018). https://doi.org/10.1016/j.respol.2018.05.003

    Article  Google Scholar 

  66. Cox, B., Bauer, C., Mendoza Beltran, A., van Vuuren, D.P., Mutel, C.L.: Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios. Appl. Energy 269, 115021 (2020). https://doi.org/10.1016/j.apenergy.2020.115021

    Article  Google Scholar 

  67. Alobeidli, K., Khadkikar, V.: A new ultracapacitor state of charge control concept to enhance battery lifespan of dual storage electric vehicles. IEEE Trans. Veh. Technol. 67(11), 10470–10481 (2018). https://doi.org/10.1109/TVT.2018.2871038

    Article  Google Scholar 

  68. Yang, X.-G., Liu, T., Wang, C.-Y.: Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 6(2), 176–185 (2021). https://doi.org/10.1038/s41560-020-00757-7

    Article  Google Scholar 

  69. Knoppe, M.: E-mobility generates new services and business models, increasing sustainability. In: Subic, A., Wellnitz, J., Leary, M., Koopmans, L. (eds.) Sustainable Automotive Technologies 2012, pp. 275–281. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24145-1_36

    Chapter  Google Scholar 

  70. Davis, L.W., Sallee, J.M.: Should electric vehicle drivers pay a mileage tax? Environ. Energy Policy Econ. 1, 65–94 (2020). https://doi.org/10.1086/706793

    Article  Google Scholar 

  71. Anil, K.M., Charan, T.S., Pradeep, K.Y.: Optimal charging schedule for electric vehicles in parking lot with solar power generation. In: Proceedings of 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, pp. 611–615 (2018). https://doi.org/10.1109/ISGT-Asia.2018.8467916

  72. Babic, J., Carvalho, A., Ketter, W., Podobnik, V.: Evaluating policies for parking lots handling electric vehicles. IEEE Access 6, 944–961 (2018). https://doi.org/10.1109/ACCESS.2017.2777098

    Article  Google Scholar 

  73. Abdelhak, B., Hamid, O., Mohamed, N.: Optimal sizing of electric vehicle charging stations in residential parking. In: Proceedings of 47th Annual Conference on the IEEE Industrial Electronics Society (IECON), Toronto, Canada, pp. 1–6 (2021). https://doi.org/10.1109/IECON48115.2021.9589453

  74. Lavieri, P., Carmen, B.D.: Electric vehicle uptake and charging - a consumer-focused review. In: Technical Report of Large-Scale Network and System Integration of Electric Vehicles: A Techno-Economic Perspective, pp. 1–55 (2021). https://doi.org/10.13140/RG.2.2.17678.08009

Download references

Acknowledgments

The authors acknowledge financial support from the MIUR (Ministry of Education, Universities and Research [Italy]) through a project entitled WEAKI TRANSIT: WEAK-demand areas Innovative TRANsport Shared services for Italian Towns (Project code: 20174ARRHT/CUP Code: J74I19000320008), financed with the PRIN 2017 (Research Projects of National Relevance) program. We authorize the MIUR to reproduce and distribute reprints for Governmental purposes, notwithstanding any copyright notations thereon. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the MIUR. Conflicts of Interest: The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ankit R. Patel or Tiziana Campisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, A.R., Tesoriere, G., Campisi, T. (2022). Users’ Socio-economic Factors to Choose Electromobility for Future Smart Cities. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13380. Springer, Cham. https://doi.org/10.1007/978-3-031-10542-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10542-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10541-8

  • Online ISBN: 978-3-031-10542-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics