Skip to main content

A Methodological Approach Based on the Choquet Integral for Sustainable Valuations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

Several methods and operational tools for assessing the sustainability and corresponding aspects can be identified in the current literature. At international level, the use of synthetic indices is clearly established through analytical indicators capable of expressing multiple aspects from an economic, social and environmental perspective. By a literature review, the construction of indices through a multi-criteria approach can be placed in the weights assignment and in construction processes based on the geometric and arithmetic average of values. The allocation of appropriate weights to performance indicators lacks, in particular, an objective methodology and subjective elements linked, e.g., to the decision-makers involved and corresponding interests. This research aims to describe a methodological frame for indices constructing through the multi-criteria approach of the Choquet Integral. The use of Choquet’s integral supports the evaluations of multiple aspects of sustainability as monitoring of the relative unbalanced values, and the weights assignment occurs through analytical functions well-established, as the Shapley function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fleurbaey, M.: Beyond the GDP: the quest for a measure of social welfare. J. Econ. Literat. 47(4), 1029–1075 (2009)

    Article  Google Scholar 

  2. Fleurbaey, M., Blanchet, D.: Beyond GDP: Measuring Welfare and Assessing Sustainability. Oxford University Press (2013)

    Google Scholar 

  3. Sen, A.: Commodities and capabilities. OUP Catalogue (1999)

    Google Scholar 

  4. Sen, A.: The Standard of Living: The Tanner Lectures. Cambridge University Press (1987)

    Google Scholar 

  5. Giovannini, E., Hall, J., D’ercole, M.M.: Measuring well-being and societal progress. In: Conference Beyond GDP-Measuring progress. true wealth, and the well-being of nations, pp. 19–20. European Parliament, Brussels (2007)

    Google Scholar 

  6. Istanbul Declaration. https://ec.europa.eu/environment/beyond_gdp/download/oecd_istanbul_declaration.pdf. Accessed 12 Dec 2021

  7. Beyond GDP. https://ec.europa.eu/environment/beyond_gdp/index_en.html. Accessed 12 Dec 2021

  8. Atkinson, A.B., Marlier, E., Wolff, P.: Beyond GDP, measuring well-being and EU-SILC. Income Living Cond. Europe 387 (2010)

    Google Scholar 

  9. European Commission: Non solo Pil. Misurare il progresso in un mondo in cambiamento. Comunicazione della Commissione al Consiglio e al Parlamento europeo. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52009DC043. Accessed 27 Dec 2021

  10. Isabelle, C.: Beyond GDP, Measuring progress, true wealth, and the well-being of nations: Conference Proceedings. n/a (2009)

    Google Scholar 

  11. Ness, B., Urbel-Piirsalu, E., Anderberg, S., Olsson, L.: Categorizing tools for sustainability assessment. Ecol. Econ. 60(3), 498–508 (2007)

    Article  Google Scholar 

  12. UNDP: Human Development Report 2010: The Real Wealth of Nations - Pathways to Human Development. http://hdr.undp.org/en/content/human-development-report-2010. Accessed 27 Dec 2021

  13. Wendling, Z.A., Emerson, J.W., de Sherbinin, A., Esty, D.C.: Environmental Performance Index. Yale Center for Environmental Law & Policy (2020)

    Google Scholar 

  14. Dobrovolskienė, N., Tvaronavičienė, M., Tamošiūnienė, R.: Tackling projects on sustainability: a Lithuanian case study. Entrep. Sustain. Issues (4.4), 477–488 (2017)

    Google Scholar 

  15. Attardi, R., Cerreta, M., Sannicandro, V., Torre, C.M.: Non-compensatory composite indicators for the evaluation of urban planning policy: the Land-Use Policy Efficiency Index (LUPEI). Eur. J. Oper. Res. 264(2), 491–507 (2018)

    Article  MathSciNet  Google Scholar 

  16. Alkire, S., Santos, M.A.: Measuring acute poverty in the developing world: robustness and scope of the multidimensional poverty index. World Dev. 59, 251–274 (2014)

    Article  Google Scholar 

  17. Decancq, K., Lugo, M.A.: Weights in multidimensional indices of well-being: an overview. Economet. Rev. 32(1), 7–34 (2013)

    Article  Google Scholar 

  18. Pinar, M., Stengos, T., Topaloglou, N.: Measuring human development: a stochastic dominance approach. J. Econ. Growth 18(1), 69–108 (2013)

    Article  Google Scholar 

  19. Pinar, M., Cruciani, C., Giove, S., Sostero, M.: Constructing the FEEM sustainability index: a Choquet integral application. Ecol. Ind. 39, 189–202 (2014)

    Article  Google Scholar 

  20. Ravallion, M.: Troubling tradeoffs in the human development index. J. Dev. Econ. 99(2), 201–209 (2012)

    Article  Google Scholar 

  21. Chakravarty, S.R.: A generalized human development index. Rev. Dev. Econ. 7(1), 99–114 (2003)

    Article  Google Scholar 

  22. Chakravarty, S.R.: A reconsideration of the tradeoffs in the new human development index. J. Econ. Inequal. 9(3), 471–474 (2011)

    Article  Google Scholar 

  23. Pinar, M.: Multidimensional well-being and inequality across the European regions with alternative interactions between the well-being dimensions. Soc. Indic. Res. 144(1), 31–72 (2019)

    Article  Google Scholar 

  24. Athanassoglou, S.: Multidimensional welfare rankings underweight imprecision: a social choice perspective. Soc. Choice Welfare 44(4), 719–744 (2015)

    Article  MathSciNet  Google Scholar 

  25. Cherchye, L., Ooghe, E., van Puyenbroeck, T.: Robust human development rankings. J. Econ. Inequal. 6(4), 287–321 (2008)

    Article  Google Scholar 

  26. Foster, J.E., McGillivray, M., Seth, S.: Composite Indices: rank robustness statistical association, and redundancy. Economet. Rev. 32(1), 35–56 (2013)

    Article  MathSciNet  Google Scholar 

  27. Pinar, M.: Choquet-integral aggregation method to aggregate social indicators to account for interactions: an application to the human development index. Soc. Indic. Res. 159(1), 1–53 (2021). https://doi.org/10.1007/s11205-021-02726-3

    Article  Google Scholar 

  28. Pinar, M., Stengos, T., Topaloglou, N.: On the construction of a feasible range of multidimensional poverty under benchmark weight uncertainty. Eur. J. Oper. Res. 281(2), 415–427 (2020)

    Article  MathSciNet  Google Scholar 

  29. Rogge, N.: On aggregating benefit of the doubt composite indicators. Eur. J. Oper. Res. 264(1), 364–369 (2018)

    Article  Google Scholar 

  30. Choquet, G.: Theory of capacities. Ann. De L’institut Fourier 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  31. Murofushi, T., Sugeno, M.: An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets Syst. 29(2), 201–227 (1989)

    Article  MathSciNet  Google Scholar 

  32. Meng, F., Zhang, Q., Cheng, H.: Approaches to multiple-criteria group decision making based on interval-valued intuitionistic fuzzy Choquet integral with respect to the generalized λ-Shapley index. Knowl. Based Syst. 37, 237–249 (2003)

    Article  Google Scholar 

  33. Labreuche, C., Grabisch, M.: The Choquet integral for the aggregation of interval scales in multicriteria decision making. Fuzzy Sets Syst. 137(1), 11–26 (2003)

    Article  MathSciNet  Google Scholar 

  34. Mazziotta, M., Pareto, A.: Methods for constructing non-compensatory composite indices: a comparative study. Forum Soc. Econ. 45, 213–229 (2016)

    Article  Google Scholar 

  35. Grabisch, M.; Marichal, J.L.; Mesiar, R.; Pap, E.: Aggregation Functions. Cambridge University Press (2009)

    Google Scholar 

  36. Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multicriteria decision aid. Ann. Oper. Res. 175(1), 247–286 (2010)

    Article  MathSciNet  Google Scholar 

  37. Meyer, P., Ponthière, G.: Eliciting preferences on multi-attribute societies with a Choquet Integral. Comput. Econ. 37(2), 133–168 (2011)

    Article  Google Scholar 

  38. Angilella, S., Bottero, M., Corrente, S., Ferretti, V.G., Lami, S., Lami, I.: Non additive robust ordinal regression for urban and territorial planning: an application for siting an urban waste landfill. Ann. Oper. Res. 245(1), 427–456 (2016)

    Article  Google Scholar 

  39. Oppio, A., Bottero, M., Arcidiacono, A.: Assessing urban quality: a proposal for a MCDA evaluation framework. Ann. Oper. Res. , 1–18 (2018). https://doi.org/10.1007/s10479-017-2738-2

  40. Gálvez Ruiz, D., Diaz Cuevas, P., Braçe, O., Garrido-Cumbrera, M.: Developing an index to measure sub-municipal level urban sprawl. Soc. Indic. Res. 140, 929–952 (2018)

    Article  Google Scholar 

  41. Carraro, C., Campagnolo, L., Eboli, F., Lanzi, E.; Parrado, R., Portale, E.: Quantifying sustainability: a new approach and world ranking. FEEM 94 (2013)

    Google Scholar 

  42. Merad, M., Dechy, N., Serir, L., Grabisch, M., Marcel, F.: Using a multi-criteria decision aid methodology to implement sustainable development principles within an organization. Eur. J. Oper. Res. 224(3), 603–613 (2013)

    Article  Google Scholar 

  43. Bertin, G., Carrino, L., Giove, S.: The Italian regional well-being in a multi-expert non-additive perspective. Soc. Indic. Res. 135, 15–51 (2018)

    Article  Google Scholar 

  44. Bottero, M., Ferretti, V., Figueira, J.R., Greco, S., Roy, B.: Dealing with a multiple criteria environmental problem with interaction effects between criteria through an extension of the ELECTRE III method. Eur. J. Oper. Res. 245(3), 837–850 (2015)

    Article  MathSciNet  Google Scholar 

  45. Bottero, M., Ferretti, V., Figueira, J.R., Greco, S., Roy, B.: On the Choquet multiple criteria preference aggregation model: theoretical and practical insights. Eur. J. Oper. Res. 271(1), 120–140 (2018)

    Article  Google Scholar 

  46. Branke, J., Corrente, S., Greco, S., Słowiński, R., Zielniewicz, P.: Using Choquet integral as preference model in interactive evolutionary multiobjective optimization. Eur. J. Oper. Res. 250(3), 884–901 (2016)

    Article  MathSciNet  Google Scholar 

  47. Campagnolo, L., Carraro, C., Eboli, F., Farnia, L., Parrado, R., Pierfederici, R.: The Ex-Ante evaluation of achieving sustainable development goals. Soc. Indic. Res. 36, 73–116 (2016)

    Google Scholar 

  48. Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in Choquet integral based multi-attribute utility theory applications of the Kappalab R package. Eur. J. Oper. Res. 186(2), 766–785 (2008)

    Article  MathSciNet  Google Scholar 

  49. Marichal, J.L., Roubens, M.: Determination of weights of interacting criteria from a reference set. Eur. J. Oper. Res. 124(3), 641–650 (2000)

    Article  MathSciNet  Google Scholar 

  50. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W.; Tucker A.W. (eds.) Contributions to the Theory of Games. Princeton University Press (1953)

    Google Scholar 

  51. Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy Sets Syst. 69(3), 279–298 (1995)

    Article  MathSciNet  Google Scholar 

  52. Grabisch, M.: The application of fuzzy integrals in multicriteria decision making. Eur. J. Oper. Res. 89(3), 445–456 (1996)

    Article  MathSciNet  Google Scholar 

  53. Meyer, P., Roubens, M.: On the use of the Choquet integral with fuzzy numbers in multiple criteria decision support. Fuzzy Sets Syst. 157(7), 927–938 (2006)

    Article  MathSciNet  Google Scholar 

  54. Marichal, J.L.: Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral. Eur. J. Oper. Res. 155(3), 771–791 (2004)

    Article  MathSciNet  Google Scholar 

  55. Murofushi, T., Soneda, S.: Techniques for reading fuzzy measures (iii): Interaction index. In: 9th Fuzzy System Symposium, pp. 693–696, Japan (1993)

    Google Scholar 

  56. Grabisch, M.: K-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 92(2), 167–189 (1997)

    Article  MathSciNet  Google Scholar 

  57. Tajani, F., Guarini, M.R., Sica, F., Ranieri, R., Anelli, D.: Multi-criteria analysis and sustainable accounting. defining indices of sustainability under Choquet’s integral. Sustainability 14(5), 2782 (2022)

    Google Scholar 

  58. Anelli, D., Sica, F.: The financial feasibility analysis of urban transformation projects: an application of a quick assessment model. In: Bevilacqua, C., Calabrò, F., Della Spina, L. (eds.) International Symposium: New Metropolitan Perspectives, SIST, vol. 178, pp. 462–474, Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48279-4_44

  59. Morano, P., Guarini, M.R., Sica, F., Anelli, D.: Ecosystem services and land take. a composite indicator for the assessment of sustainable urban projects. In: International Conference on Computational Science and Its Applications, LNTCS, vol. 12954, pp. 210–225, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86979-3_16

  60. Tajani, F., Liddo, F.D., Guarini, M.R., Ranieri, R., Anelli, D.: An assessment methodology for the evaluation of the impacts of the COVID-19 pandemic on the italian housing market demand. Buildings 11(12), 592 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossana Ranieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tajani, F., Sica, F., Guarini, M.R., Morano, P., Ranieri, R. (2022). A Methodological Approach Based on the Choquet Integral for Sustainable Valuations. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13381. Springer, Cham. https://doi.org/10.1007/978-3-031-10548-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10548-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10547-0

  • Online ISBN: 978-3-031-10548-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics