Abstract
In 2020, the number of Brazil inhabitants was approximately 212 millions, whereas the number of vehicles jumped from 104 to 107 millions. It is observed, therefore, that there is 1 vehicle for every 2 inhabitants. That same year, the population in urban areas went to 80%. Managing traffic in big cities is becoming a huge challenge. Traffic lights operating with Fixed Time Signal to control vehicle flux are no longer efficient in all traffic scenarios. Technological advances in Computer Vision, moving objects detection and classification techniques and the demanding of little computer power to manage these tasks allowed the development of TEOP, a CV-based traffic control system. This low cost solution was implemented to advance the Fixed Time Signal system, cameras and logical network infrastructure already in use in Brazilian cities, transforming regular traffic lights into smart traffic lights (STL). An application was developed and installed in a computer to capture images of traffic, count vehicles and calculate time needed for them to pass through. Raspberry controlled traffic lights. In comparison to regular traffic lights, STLs improved traffic flow by 33%, allowing a wait of just 4 s in cases where there is no vehicle flow at the competing traffic light and reducing the crossing time of 46 vehicles from 152 to 116 s when there were 12 vehicles on the competing side, a significant gain. It was also capable of reporting traffic jams and creating a database that could be used for decision-taking by agencies responsible for each route.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
IBGE. Frota de veículos no Brasil (2020). https://cidades.ibge.gov.br/brasil/pesquisa/22/28120?ano=2020. Acesso em 12 ago. 2020 (BAUZA; GONZALVES; SANCHEZ-SORIANO, 2010)
Krauss, M.: Automação de sistema semafórico. 67 f. Trabalho de Conclusão de Curso (Tecnologia em Automação Industrial). - Universidade Tecnológica Federal do Paraná. UFTPR, Curitiba (2014)
Martins, J.A.: Transporte, Uso do Solo e Autossustentabilidade: Teoria e Prática para a Previsão de Impactos sobre a Qualidade do Ar. 1996, 250f. Tese (Engenharia de Transportes). UFRJ, Rio de Janeiro (1996)
Silva, G.C.: Tráfego, monóxido de carbono e ruído em áreas urbanas: o caso de Florianópolis. 1998. 126 f. Dissertação (Engenharia Civil). UFSC, Florianópolis (1998)
G1. Distrito Federal. Semáforos inteligentes devem ser implantados em fevereiro no DF, diz Detran. G1, Distrito Federal, 08 November 2017. https://g1.globo.com/distrito-federal/noticia/semaforos-inteligentes-devem-ser-implantados-em-fevereiro-no-df-diz-detran.ghtml. Acesso em 29 maio. 2021
Castro, F.S., et al.: Identificação e Rastreamento de veículos utilizando fluxo ótico. Colloquium Exactarum 7(2), 73–88 (2015)
Valente, J.: Aumento do monitoramento traz debate sobre modernização e privacidade. Agência Brasil. Brasília, 12 September 2019. https://agenciabrasil.ebc.com.br/geral/noticia/2019-09/aumento-do-monitoramento-traz-debate-sobre-modernizacao-e-privacidade. Acesso em 01 maio 2021
Kanungo, A., Sharma, A., Singla, C.: Smart traffic lights switching and traffic density calculation using video processing. In: Recent Advances in Engineering and Computational Sciences (RAECS), pp. 1–6 (2014)
Marciano, J.L.P.: Segurança da informação: uma abordagem social. 212 f. Tese (Doutorado em Ciência da Informação)-Universidade de Brasília (2006)
Bhatnagar, S., Bhatnagar, Y.: Distributed Trafic Control System (2019)
Ardhapure, M.R., et al.: Smart traffic signal management (2018)
Komasilovs, V., et al.: Traffic Monitoring System Development in Jelgava City, Latvia. VEHITS (2018)
The, P.N., et al.: Real time ARM-based traffic Level of Service classification system. In: 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE (2016)
Altundogan, T.G., Karakose, M.: Image processing and deep neural image classification based physical feature determiner for traffic stakeholders. In: 2019 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG). IEEE (2019)
Cismaru, S.-I., et al.: Experimental study regarding an intelligent control system for traffic light intersections. In: 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE (2020)
Sandler, M., et al.: MobileNetV2: Inverted Residuals and Linear Bottlenecks, 13 January 2018
Aquino, C.: Dos Barris à Paralela: 88 Smart traffic lights will reduce traffic time. Correio 24 horas. Salvador, 08 may 2017. https://www.correio24horas.com.br/noticia/nid/dos-barris-a-paralela-88-semaforos-inteligentes-vao-diminuir-tempo-no-transito/. Acesso em 31 May 2021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
da Silva Cortez, D.E., de Morais Barroca Filho, I., Silva, E.M.C., Girão, G. (2022). Traffic Control System Development Based on Computer Vision. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13381. Springer, Cham. https://doi.org/10.1007/978-3-031-10548-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-10548-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10547-0
Online ISBN: 978-3-031-10548-7
eBook Packages: Computer ScienceComputer Science (R0)