Abstract
We have performed a theoretical investigation of the S\(^+\)(\(^4\)S) + SiH\(_{2}\)(\(^1\)A\(_1\)) reaction, a possible formation route of the HSiS\(^+\) and SiSH\(^+\) cations that are alleged to be precursors of interstellar silicon sulfide, SiS. Electronic structure calculations allowed us to characterize the relevant features of the potential energy surface of the system and identify the reaction pathways. The reaction has two exothermic channels leading to the isomeric species \(^3\)HSiS\(^{+}\) and \(^3\)SiSH\(^{+}\) formed in conjunction with H atoms. The reaction is not characterized by an entrance barrier and, therefore, it is expected to be fast also under the very low temperature conditions of insterstellar clouds. The two ions are formed in their first electronically excited state because of the spin multiplicity of the overall potential energy surface. In addition, following the suggestion that neutral species are formed by proton transfer of protonated cations to ammonia, we have derived the potential energy surface for the reactions \(^3\)HSiS\(^{+}\)/\(^3\)SiSH\(^{+}\)+NH\(_{3}\)(\(^{1}\)A\(_1\)).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
The Cologne Database for Molecular spectroscopy. https://cdms.astro.uni-koeln.de/classic/molecules
Podio, L., et al.: Silicon-bearing molecules in the shock L1157-B1: first detection of SiS around a Sun-like protostar. Mon. Not. R. Astron. Soc. Lett. 470(1), L16–L20 (2017)
Herbst, E., Millar, T., Wlodek, S., Bohme, D.: The chemistry of silicon in dense interstellar clouds. Astron. Astrophys. 222, 205–210 (1989)
MacKay, D.: The chemistry of silicon in hot molecular cores. Mon. Not. R. Astron. Soc. 274(3), 694–700 (1995)
Schilke, P., Walmsley, C., Pineau des Forets, G., Flower, D.: SiO production in interstellar shocks. Astron. Astrophys. 321, 293–304 (1997)
Le Picard, S.D., Canosa, A., Rebrion-Rowe, C., Rowe, B.: The Si (\(^{3}\)P\(_{J}\))+ O\(_{2}\) reaction: a fast source of SiO at very low temperature; CRESU measurements and interstellar consequences. Astron. Astrophys. 372(3), 1064–1070 (2001). https://doi.org/10.1051/0004-6361:20010542
Gusdorf, A., Des Forêts, G.P., Cabrit, S., Flower, D.: SiO line emission from interstellar jets and outflows: silicon-containing mantles and non-stationary shock waves. Astron. Astrophys. 490(2), 695–706 (2008)
Morris, M., Gilmore, W., Palmer, P., Turner, B., Zuckerman, B.: Detection of interstellar SiS and a study of the IRC+ 10216 molecular envelope. Astrophys. J. 199, L47–L51 (1975)
Cernicharo, J., Guélin, M., Kahane, C.: A \(\lambda \)2 mm molecular line survey of the C-star envelope IRC+ 10216. Astron. Astrophys. Suppl. Ser. 142(2), 181–215 (2000)
Prieto, L.V., et al.: Si-bearing molecules toward IRC+ 10216: ALMA unveils the molecular envelope of CWLeo. Astrophys. J. Lett. 805(2), L13 (2015)
Dickinson, D., Kuiper, E.R.: Interstellar silicon sulfide. Astrophys. J. 247, 112–115 (1981)
Ziurys, L.M.: SiS in Orion-KL-evidence for ‘outflow’ chemistry. Astrophys. J. 324, 544–552 (1988)
Ziurys, L.: SiS in outflow regions-more high-temperature silicon chemistry. Astrophys. J. 379, 260–266 (1991)
Tercero, B., Vincent, L., Cernicharo, J., Viti, S., Marcelino, N.: A line-confusion limited millimeter survey of Orion KL-II. Silicon-bearing species. Astron. Astrophys. 528, A26 (2011)
Rosi, M., et al.: Possible scenarios for SiS formation in the interstellar medium: electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic sulphur and S2. Chem. Phys. Lett. 695, 87–93 (2018)
Rosi, M., et al.: Electronic structure and kinetics calculations for the Si+SH reaction, a possible route of SiS formation in star-forming regions. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11621, pp. 306–315. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24302-9_22
Skouteris, D., et al.: A theoretical investigation of the reaction H+SiS\(_2\) and implications for the chemistry of silicon in the interstellar medium. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 719–729. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_50
Zanchet, A., Roncero, O., Agúndez, M., Cernicharo, J.: Formation and destruction of SiS in space. Astrophys. J. 862(1), 38 (2018)
Mota, V., Varandas, A., Mendoza, E., Wakelam, V., Galvão, B.: SiS formation in the interstellar medium through Si+SH gas-phase reactions. Astrophys. J. 920(1), 37 (2021)
Doddipatla, S., He, C., Goettl, S.J., Kaiser, R.I., Galvão, B.R., Millar, T.J.: Nonadiabatic reaction dynamics to silicon monosulfide (SiS): a key molecular building block to sulfur-rich interstellar grains. Sci. Adv. 7(26), eabg7003 (2021)
Goettl, S.J., et al.: A crossed molecular beams and computational study of the formation of the astronomically elusive thiosilaformyl radical (HSiS, X\(^{2}\)A\(^{^{\prime }}\)). J. Phys. Chem. Lett. 12(25), 5979–5986 (2021)
Wakelam, V., et al.: The 2014 KIDA network for interstellar chemistry. Astrophys. J. Suppl. Ser. 217(2), 20 (2015)
McElroy, D., Walsh, C., Markwick, A., Cordiner, M., Smith, K., Millar, T.: The UMIST database for astrochemistry 2012. Astron. Astrophys. 550, A36 (2013)
Wlodek, S., Bohme, D.K.: Gas-phase oxidation and sulphidation of Si\(^{+}\)(\(^{2}\)P), SiO\(^{+}\) and SiS\(^{+}\). J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 85(10), 1643–1654 (1989)
Wlodek, S., Fox, A., Bohme, D.: Gas-phase reactions of Si\(^{+}\) and SiOH\(^{+}\) with molecules containing hydroxyl groups: possible ion-molecule reaction pathways toward silicon monoxide, silanoic acid, and trihydroxy-, trimethoxy-, and triethoxysilane. J. Am. Chem. Soc. 109(22), 6663–6667 (1987)
Ceccarelli, C., Viti, S., Balucani, N., Taquet, V.: The evolution of grain mantles and silicate dust growth at high redshift. Mon. Not. R. Astron. Soc. 476(1), 1371–1383 (2018)
Taquet, V., Wirström, E.S., Charnley, S.B.: Formation and recondensation of complex organic molecules during protostellar luminosity outbursts. Astrophys. J. 821(1), 46 (2016)
Skouteris, D., et al.: Interstellar dimethyl ether gas-phase formation: a quantum chemistry and kinetics study. Mon. Not. R. Astron. Soc. 482(3), 3567–3575 (2019)
Mancini, L., et al.: The reaction N(\(^{2}\)D)+ CH\(_{3}\)CCH (methylacetylene): a combined crossed molecular beams and theoretical investigation and implications for the atmosphere of titan. J. Phys. Chem. A 125(40), 8846–8859 (2021)
Balucani, N., Skouteris, D., Ceccarelli, C., Codella, C., Falcinelli, S., Rosi, M.: A theoretical investigation of the reaction between the amidogen, NH, and the ethyl, C\(_{2}\)H\(_{5}\), radicals: a possible gas-phase formation route of interstellar and planetary ethanimine. Mol. Astrophys. 13, 30–37 (2018)
Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993)
Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)
Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)
Woon, D.E., Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98(2), 1358–1371 (1993)
Kendall, R.A., Dunning, T.H., Jr., Harrison, R.J.: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96(9), 6796–6806 (1992)
Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90(4), 2154–2161 (1989). https://doi.org/10.1063/1.456010
Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94(14), 5523–5527 (1990). https://doi.org/10.1021/j100377a021
Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32(1), 359–401 (1981)
Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157(6), 479–483 (1989)
Olsen, J., Jo/rgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104(20), 8007–8015 (1996)
Frisch, M., et al.: Gaussian 09, rev. A. 02. Gaussian. Inc., Wallingford, CT (2009)
Schaftenaar, G., Noordik, J.H.: Molden: a pre-and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 14(2), 123–134 (2000). https://doi.org/10.1023/A:1008193805436
Schaftenaar, G., Vlieg, E., Vriend, G.: Molden 2.0: quantum chemistry meets proteins. J. Comput.-Aided Mol. Des. 31(9), 789–800 (2017)
Leonori, F., et al.: Experimental and theoretical studies on the dynamics of the O(\(^3\)P)+ propene reaction: primary products, branching ratios, and role of intersystem crossing. J. Phys. Chem. C 119(26), 14632–14652 (2015)
Gimondi, I., Cavallotti, C., Vanuzzo, G., Balucani, N., Casavecchia, P.: Reaction dynamics of O(\(^3\)P)+ propyne: II. Primary products, branching ratios, and role of intersystem crossing from ab initio coupled triplet/singlet potential energy surfaces and statistical calculations. J. Phys. Chem. A 120(27), 4619–4633 (2016)
Vanuzzo, G., et al.: Reaction dynamics of O(\(^3\)P)+ propyne: I. Primary products, branching ratios, and role of intersystem crossing from crossed molecular beam experiments. J. Phys. Chem. A 120(27), 4603–4618 (2016)
Caracciolo, A., et al.: Combined experimental and theoretical studies of the O(\(^3\)P)+ 1-butene reaction dynamics: primary products, branching fractions, and role of intersystem crossing. J. Phys. Chem. A 123(46), 9934–9956 (2019)
Cavallotti, C., et al.: Theoretical study of the extent of intersystem crossing in the O(\(^3\)P)+ C\(_6\)H\(_6\) reaction with experimental validation. J. Phys. Chem. Lett. 11(22), 9621–9628 (2020)
Vanuzzo, G., et al.: Crossed-beam and theoretical studies of the O(\(^3\)P, \(^1\)D)+ benzene reactions: primary products, branching fractions, and role of intersystem crossing. J. Phys. Chem. A 125(38), 8434–8453 (2021)
Fu, B., et al.: Experimental and theoretical studies of the O(\(^3\)P)+ C\(_2\)H\(_4\) reaction dynamics: collision energy dependence of branching ratios and extent of intersystem crossing. J. Chem. Phys. 137(22), 22A532 (2012)
Balucani, N., Leonori, F., Casavecchia, P., Fu, B., Bowman, J.M.: Crossed molecular beams and quasiclassical trajectory surface hopping studies of the multichannel nonadiabatic O(\(^3\)P)+ ethylene reaction at high collision energy. J. Phys. Chem. A 119(50), 12498–12511 (2015)
Leonori, F., Occhiogrosso, A., Balucani, N., Bucci, A., Petrucci, R., Casavecchia, P.: Crossed molecular beam dynamics studies of the O(\(^3\)P)+ allene reaction: primary products, branching ratios, and dominant role of intersystem crossing. J. Phys. Chem. Lett. 3(1), 75–80 (2012)
Casavecchia, P., Leonori, F., Balucani, N.: Reaction dynamics of oxygen atoms with unsaturated hydrocarbons from crossed molecular beam studies: primary products, branching ratios and role of intersystem crossing. Int. Rev. Phys. Chem. 34(2), 161–204 (2015)
Acknowledgements
This project has received funding from the Italian MUR (PRIN 2020, “Astrochemistry beyond the second period elements”, Prot. 2020AFB3FX) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 811312 for the project ‘Astro-Chemical Origins’ (ACO). The authors thank the Herla Project - Università degli Studi di Perugia (http://www.hpc.unipg.it/hosting/vherla/vherla.html) for allocated computing time. The authors thank the Dipartimento di Ingegneria Civile ed Ambientale of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018-2022”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mancini, L., Trinari, M., de Aragão, E.V.F., Rosi, M., Balucani, N. (2022). The S\(^+\)(\(^4\)S)+SiH\(_{2}\)(\(^1\)A\(_1\)) Reaction: Toward the Synthesis of Interstellar SiS. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13378. Springer, Cham. https://doi.org/10.1007/978-3-031-10562-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-10562-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10561-6
Online ISBN: 978-3-031-10562-3
eBook Packages: Computer ScienceComputer Science (R0)