Skip to main content

The S\(^+\)(\(^4\)S)+SiH\(_{2}\)(\(^1\)A\(_1\)) Reaction: Toward the Synthesis of Interstellar SiS

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

We have performed a theoretical investigation of the S\(^+\)(\(^4\)S) + SiH\(_{2}\)(\(^1\)A\(_1\)) reaction, a possible formation route of the HSiS\(^+\) and SiSH\(^+\) cations that are alleged to be precursors of interstellar silicon sulfide, SiS. Electronic structure calculations allowed us to characterize the relevant features of the potential energy surface of the system and identify the reaction pathways. The reaction has two exothermic channels leading to the isomeric species \(^3\)HSiS\(^{+}\) and \(^3\)SiSH\(^{+}\) formed in conjunction with H atoms. The reaction is not characterized by an entrance barrier and, therefore, it is expected to be fast also under the very low temperature conditions of insterstellar clouds. The two ions are formed in their first electronically excited state because of the spin multiplicity of the overall potential energy surface. In addition, following the suggestion that neutral species are formed by proton transfer of protonated cations to ammonia, we have derived the potential energy surface for the reactions \(^3\)HSiS\(^{+}\)/\(^3\)SiSH\(^{+}\)+NH\(_{3}\)(\(^{1}\)A\(_1\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The Cologne Database for Molecular spectroscopy. https://cdms.astro.uni-koeln.de/classic/molecules

  2. Podio, L., et al.: Silicon-bearing molecules in the shock L1157-B1: first detection of SiS around a Sun-like protostar. Mon. Not. R. Astron. Soc. Lett. 470(1), L16–L20 (2017)

    Article  Google Scholar 

  3. Herbst, E., Millar, T., Wlodek, S., Bohme, D.: The chemistry of silicon in dense interstellar clouds. Astron. Astrophys. 222, 205–210 (1989)

    Google Scholar 

  4. MacKay, D.: The chemistry of silicon in hot molecular cores. Mon. Not. R. Astron. Soc. 274(3), 694–700 (1995)

    Article  Google Scholar 

  5. Schilke, P., Walmsley, C., Pineau des Forets, G., Flower, D.: SiO production in interstellar shocks. Astron. Astrophys. 321, 293–304 (1997)

    Google Scholar 

  6. Le Picard, S.D., Canosa, A., Rebrion-Rowe, C., Rowe, B.: The Si (\(^{3}\)P\(_{J}\))+ O\(_{2}\) reaction: a fast source of SiO at very low temperature; CRESU measurements and interstellar consequences. Astron. Astrophys. 372(3), 1064–1070 (2001). https://doi.org/10.1051/0004-6361:20010542

    Article  Google Scholar 

  7. Gusdorf, A., Des Forêts, G.P., Cabrit, S., Flower, D.: SiO line emission from interstellar jets and outflows: silicon-containing mantles and non-stationary shock waves. Astron. Astrophys. 490(2), 695–706 (2008)

    Article  Google Scholar 

  8. Morris, M., Gilmore, W., Palmer, P., Turner, B., Zuckerman, B.: Detection of interstellar SiS and a study of the IRC+ 10216 molecular envelope. Astrophys. J. 199, L47–L51 (1975)

    Article  Google Scholar 

  9. Cernicharo, J., Guélin, M., Kahane, C.: A \(\lambda \)2 mm molecular line survey of the C-star envelope IRC+ 10216. Astron. Astrophys. Suppl. Ser. 142(2), 181–215 (2000)

    Article  Google Scholar 

  10. Prieto, L.V., et al.: Si-bearing molecules toward IRC+ 10216: ALMA unveils the molecular envelope of CWLeo. Astrophys. J. Lett. 805(2), L13 (2015)

    Article  Google Scholar 

  11. Dickinson, D., Kuiper, E.R.: Interstellar silicon sulfide. Astrophys. J. 247, 112–115 (1981)

    Article  Google Scholar 

  12. Ziurys, L.M.: SiS in Orion-KL-evidence for ‘outflow’ chemistry. Astrophys. J. 324, 544–552 (1988)

    Article  Google Scholar 

  13. Ziurys, L.: SiS in outflow regions-more high-temperature silicon chemistry. Astrophys. J. 379, 260–266 (1991)

    Article  Google Scholar 

  14. Tercero, B., Vincent, L., Cernicharo, J., Viti, S., Marcelino, N.: A line-confusion limited millimeter survey of Orion KL-II. Silicon-bearing species. Astron. Astrophys. 528, A26 (2011)

    Article  Google Scholar 

  15. Rosi, M., et al.: Possible scenarios for SiS formation in the interstellar medium: electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic sulphur and S2. Chem. Phys. Lett. 695, 87–93 (2018)

    Article  Google Scholar 

  16. Rosi, M., et al.: Electronic structure and kinetics calculations for the Si+SH reaction, a possible route of SiS formation in star-forming regions. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11621, pp. 306–315. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24302-9_22

    Chapter  Google Scholar 

  17. Skouteris, D., et al.: A theoretical investigation of the reaction H+SiS\(_2\) and implications for the chemistry of silicon in the interstellar medium. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 719–729. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_50

    Chapter  Google Scholar 

  18. Zanchet, A., Roncero, O., Agúndez, M., Cernicharo, J.: Formation and destruction of SiS in space. Astrophys. J. 862(1), 38 (2018)

    Article  Google Scholar 

  19. Mota, V., Varandas, A., Mendoza, E., Wakelam, V., Galvão, B.: SiS formation in the interstellar medium through Si+SH gas-phase reactions. Astrophys. J. 920(1), 37 (2021)

    Article  Google Scholar 

  20. Doddipatla, S., He, C., Goettl, S.J., Kaiser, R.I., Galvão, B.R., Millar, T.J.: Nonadiabatic reaction dynamics to silicon monosulfide (SiS): a key molecular building block to sulfur-rich interstellar grains. Sci. Adv. 7(26), eabg7003 (2021)

    Google Scholar 

  21. Goettl, S.J., et al.: A crossed molecular beams and computational study of the formation of the astronomically elusive thiosilaformyl radical (HSiS, X\(^{2}\)A\(^{^{\prime }}\)). J. Phys. Chem. Lett. 12(25), 5979–5986 (2021)

    Article  Google Scholar 

  22. Wakelam, V., et al.: The 2014 KIDA network for interstellar chemistry. Astrophys. J. Suppl. Ser. 217(2), 20 (2015)

    Article  Google Scholar 

  23. McElroy, D., Walsh, C., Markwick, A., Cordiner, M., Smith, K., Millar, T.: The UMIST database for astrochemistry 2012. Astron. Astrophys. 550, A36 (2013)

    Article  Google Scholar 

  24. Wlodek, S., Bohme, D.K.: Gas-phase oxidation and sulphidation of Si\(^{+}\)(\(^{2}\)P), SiO\(^{+}\) and SiS\(^{+}\). J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 85(10), 1643–1654 (1989)

    Google Scholar 

  25. Wlodek, S., Fox, A., Bohme, D.: Gas-phase reactions of Si\(^{+}\) and SiOH\(^{+}\) with molecules containing hydroxyl groups: possible ion-molecule reaction pathways toward silicon monoxide, silanoic acid, and trihydroxy-, trimethoxy-, and triethoxysilane. J. Am. Chem. Soc. 109(22), 6663–6667 (1987)

    Article  Google Scholar 

  26. Ceccarelli, C., Viti, S., Balucani, N., Taquet, V.: The evolution of grain mantles and silicate dust growth at high redshift. Mon. Not. R. Astron. Soc. 476(1), 1371–1383 (2018)

    Article  Google Scholar 

  27. Taquet, V., Wirström, E.S., Charnley, S.B.: Formation and recondensation of complex organic molecules during protostellar luminosity outbursts. Astrophys. J. 821(1), 46 (2016)

    Article  Google Scholar 

  28. Skouteris, D., et al.: Interstellar dimethyl ether gas-phase formation: a quantum chemistry and kinetics study. Mon. Not. R. Astron. Soc. 482(3), 3567–3575 (2019)

    Article  Google Scholar 

  29. Mancini, L., et al.: The reaction N(\(^{2}\)D)+ CH\(_{3}\)CCH (methylacetylene): a combined crossed molecular beams and theoretical investigation and implications for the atmosphere of titan. J. Phys. Chem. A 125(40), 8846–8859 (2021)

    Article  Google Scholar 

  30. Balucani, N., Skouteris, D., Ceccarelli, C., Codella, C., Falcinelli, S., Rosi, M.: A theoretical investigation of the reaction between the amidogen, NH, and the ethyl, C\(_{2}\)H\(_{5}\), radicals: a possible gas-phase formation route of interstellar and planetary ethanimine. Mol. Astrophys. 13, 30–37 (2018)

    Article  Google Scholar 

  31. Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993)

    Article  Google Scholar 

  32. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Article  Google Scholar 

  33. Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)

    Article  Google Scholar 

  34. Woon, D.E., Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98(2), 1358–1371 (1993)

    Article  Google Scholar 

  35. Kendall, R.A., Dunning, T.H., Jr., Harrison, R.J.: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96(9), 6796–6806 (1992)

    Article  Google Scholar 

  36. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90(4), 2154–2161 (1989). https://doi.org/10.1063/1.456010

    Article  Google Scholar 

  37. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94(14), 5523–5527 (1990). https://doi.org/10.1021/j100377a021

    Article  Google Scholar 

  38. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32(1), 359–401 (1981)

    Article  Google Scholar 

  39. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157(6), 479–483 (1989)

    Article  Google Scholar 

  40. Olsen, J., Jo/rgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104(20), 8007–8015 (1996)

    Google Scholar 

  41. Frisch, M., et al.: Gaussian 09, rev. A. 02. Gaussian. Inc., Wallingford, CT (2009)

    Google Scholar 

  42. Schaftenaar, G., Noordik, J.H.: Molden: a pre-and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 14(2), 123–134 (2000). https://doi.org/10.1023/A:1008193805436

    Article  Google Scholar 

  43. Schaftenaar, G., Vlieg, E., Vriend, G.: Molden 2.0: quantum chemistry meets proteins. J. Comput.-Aided Mol. Des. 31(9), 789–800 (2017)

    Article  Google Scholar 

  44. Leonori, F., et al.: Experimental and theoretical studies on the dynamics of the O(\(^3\)P)+ propene reaction: primary products, branching ratios, and role of intersystem crossing. J. Phys. Chem. C 119(26), 14632–14652 (2015)

    Article  Google Scholar 

  45. Gimondi, I., Cavallotti, C., Vanuzzo, G., Balucani, N., Casavecchia, P.: Reaction dynamics of O(\(^3\)P)+ propyne: II. Primary products, branching ratios, and role of intersystem crossing from ab initio coupled triplet/singlet potential energy surfaces and statistical calculations. J. Phys. Chem. A 120(27), 4619–4633 (2016)

    Article  Google Scholar 

  46. Vanuzzo, G., et al.: Reaction dynamics of O(\(^3\)P)+ propyne: I. Primary products, branching ratios, and role of intersystem crossing from crossed molecular beam experiments. J. Phys. Chem. A 120(27), 4603–4618 (2016)

    Article  Google Scholar 

  47. Caracciolo, A., et al.: Combined experimental and theoretical studies of the O(\(^3\)P)+ 1-butene reaction dynamics: primary products, branching fractions, and role of intersystem crossing. J. Phys. Chem. A 123(46), 9934–9956 (2019)

    Article  Google Scholar 

  48. Cavallotti, C., et al.: Theoretical study of the extent of intersystem crossing in the O(\(^3\)P)+ C\(_6\)H\(_6\) reaction with experimental validation. J. Phys. Chem. Lett. 11(22), 9621–9628 (2020)

    Article  Google Scholar 

  49. Vanuzzo, G., et al.: Crossed-beam and theoretical studies of the O(\(^3\)P, \(^1\)D)+ benzene reactions: primary products, branching fractions, and role of intersystem crossing. J. Phys. Chem. A 125(38), 8434–8453 (2021)

    Article  Google Scholar 

  50. Fu, B., et al.: Experimental and theoretical studies of the O(\(^3\)P)+ C\(_2\)H\(_4\) reaction dynamics: collision energy dependence of branching ratios and extent of intersystem crossing. J. Chem. Phys. 137(22), 22A532 (2012)

    Article  Google Scholar 

  51. Balucani, N., Leonori, F., Casavecchia, P., Fu, B., Bowman, J.M.: Crossed molecular beams and quasiclassical trajectory surface hopping studies of the multichannel nonadiabatic O(\(^3\)P)+ ethylene reaction at high collision energy. J. Phys. Chem. A 119(50), 12498–12511 (2015)

    Article  Google Scholar 

  52. Leonori, F., Occhiogrosso, A., Balucani, N., Bucci, A., Petrucci, R., Casavecchia, P.: Crossed molecular beam dynamics studies of the O(\(^3\)P)+ allene reaction: primary products, branching ratios, and dominant role of intersystem crossing. J. Phys. Chem. Lett. 3(1), 75–80 (2012)

    Article  Google Scholar 

  53. Casavecchia, P., Leonori, F., Balucani, N.: Reaction dynamics of oxygen atoms with unsaturated hydrocarbons from crossed molecular beam studies: primary products, branching ratios and role of intersystem crossing. Int. Rev. Phys. Chem. 34(2), 161–204 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Italian MUR (PRIN 2020, “Astrochemistry beyond the second period elements”, Prot. 2020AFB3FX) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 811312 for the project ‘Astro-Chemical Origins’ (ACO). The authors thank the Herla Project - Università degli Studi di Perugia (http://www.hpc.unipg.it/hosting/vherla/vherla.html) for allocated computing time. The authors thank the Dipartimento di Ingegneria Civile ed Ambientale of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018-2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mancini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mancini, L., Trinari, M., de Aragão, E.V.F., Rosi, M., Balucani, N. (2022). The S\(^+\)(\(^4\)S)+SiH\(_{2}\)(\(^1\)A\(_1\)) Reaction: Toward the Synthesis of Interstellar SiS. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13378. Springer, Cham. https://doi.org/10.1007/978-3-031-10562-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10562-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10561-6

  • Online ISBN: 978-3-031-10562-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics