Skip to main content

A Theoretical Investigation of the Reactions of N(\(^2\)D) and CN with Acrylonitrile and Implications for the Prebiotic Chemistry of Titan

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

The reactions between acrylonitrile and two different reactive species, namely N(\(^2\)D) and the CN radical were investigated by performing accurate electronic structure calculations with the aim to unveil the most important aspects of the Potential Energy Surfaces. For each reaction, several product channels involving the elimination of H atoms were identified, allowing the formation of different radical species, depending on the initial site of attack. Both reactions appears to be exothermic and without an entrance barrier, suggesting their possible efficient role in the nitrogen-rich chemistry of the atmosphere of Titan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balucani, N.: Nitrogen fixation by photochemistry in the atmosphere of titan and implications for prebiotic chemistry. In: The Early Evolution of the Atmospheres of Terrestrial Planets, pp. 155–164. Springer, Cham (2013). https://doi.org/10.1007/978-1-4614-5191-4_12

  2. Balucani, N.: Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem. Soc. Rev. 41(16), 5473–5483 (2012)

    Article  Google Scholar 

  3. Balucani, N.: Elementary reactions and their role in gas-phase prebiotic chemistry. Int. J. Mol. Sci. 10(5), 2304–2335 (2009)

    Article  Google Scholar 

  4. Broadfoot, A., et al.: Extreme ultraviolet observations from Voyager 1 encounter with Saturn. Science 212(4491), 206–211 (1981)

    Article  Google Scholar 

  5. Hanel, R., et al.: Infrared observations of the saturnian system from Voyager 1. Science 212(4491), 192–200 (1981)

    Article  Google Scholar 

  6. Lindal, G.F., Wood, G., Hotz, H., Sweetnam, D., Eshleman, V., Tyler, G.: The atmosphere of Titan: an analysis of the Voyager 1 radio occultation measurements. Icarus 53(2), 348–363 (1983)

    Article  Google Scholar 

  7. Coustenis, A., Bezard, B., Gautier, D.: Titan’s atmosphere from Voyager infrared observations: I. The gas composition of titan’s equatorial region. Icarus 80(1), 54–76 (1989)

    Article  Google Scholar 

  8. Brown, R.H., Lebreton, J.P., Waite, J.H.: Titan from Cassini-Huygens (2009). https://doi.org/10.1007/978-1-4020-9215-2

  9. Yung, Y.L., Allen, M., Pinto, J.P.: Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys. J. Suppl. Ser. 55(3), 465–506 (1984)

    Article  Google Scholar 

  10. Lavvas, P., Coustenis, A., Vardavas, I.: Coupling photochemistry with haze formation in Titan’s atmosphere, part I: model description. Planet. Space Sci. 56(1), 27–66 (2008)

    Article  Google Scholar 

  11. Lavvas, P., Coustenis, A., Vardavas, I.: Coupling photochemistry with haze formation in Titan’s atmosphere, part II: results and validation with Cassini/Huygens data. Planet. Space Sci. 56(1), 67–99 (2008)

    Article  Google Scholar 

  12. Hébrard, E., Dobrijevic, M., Bénilan, Y., Raulin, F.: Photochemical kinetics uncertainties in modeling titan’s atmosphere: a review. J. Photochem. Photobiol. C 7(4), 211–230 (2006)

    Article  Google Scholar 

  13. Dutuit, O., et al.: Critical review of N, N\(^+\), N\(_2^+\), N\(^{++}\), and N\(_2^{++}\) main production processes and reactions of relevance to Titan’s atmosphere. Astrophys. J. Suppl. Ser. 204(2), 20 (2013)

    Article  Google Scholar 

  14. Herron, J.T., et al.: Evaluated chemical kinetics data for reactions of N (\(^2\)D), N\(_2\)(\(^2\)P), and N\(_2\) in the gas phase (1999)

    Google Scholar 

  15. Schofield, K.: Critically evaluated rate constants for gaseous reactions of several electronically excited species. J. Phys. Chem. Ref. Data 8(3), 723–798 (1979)

    Article  Google Scholar 

  16. Mancini, L., et al.: The reaction N(\(^{2}\)D)+ CH\(_{3}\)CCH (methylacetylene): a combined crossed molecular beams and theoretical investigation and implications for the atmosphere of Titan. J. Phys. Chem. A 125(40), 8846–8859 (2021)

    Article  Google Scholar 

  17. Liang, P., et al.: Combined crossed molecular beams and computational study on the N(\(^{2}\)D)+ HCCCN (X\(^1\Sigma \)+) reaction and implications for extra-terrestrial environments. Mol. Phys. 120(1–2), e1948126 (2022)

    Article  Google Scholar 

  18. Balucani, N., et al.: Combined crossed molecular beam and theoretical studies of the N (\(^2\)D)+ CH\(_4\) reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 113(42), 11138–11152 (2009)

    Article  Google Scholar 

  19. Balucani, N., et al.: Cyanomethylene formation from the reaction of excited nitrogen atoms with acetylene: a crossed beam and ab initio study. J. Am. Chem. Soc. 122(18), 4443–4450 (2000)

    Article  Google Scholar 

  20. Balucani, N., et al.: Formation of nitriles and imines in the atmosphere of Titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N (\({}^2\)D) with ethane. Faraday Discuss. 147, 189–216 (2010)

    Article  Google Scholar 

  21. Balucani, N., et al.: Combined crossed beam and theoretical studies of the N (2D)+ \(\text{ C}_2\text{ H}_4\) reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 116(43), 10467–10479 (2012)

    Article  Google Scholar 

  22. Balucani, N., Cartechini, L., Alagia, M., Casavecchia, P., Volpi, G.G.: Observation of nitrogen-bearing organic molecules from reactions of nitrogen atoms with hydrocarbons: a crossed beam study of N (2D)+ ethylene. J. Phys. Chem. A 104(24), 5655–5659 (2000)

    Article  Google Scholar 

  23. Mancini, L., de Aragão, E.V.F., Rosi, M., Skouteris, D., Balucani, N.: A theoretical investigation of the reactions of N(\(^2\)D) with small alkynes and implications for the prebiotic chemistry of Titan. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12251, pp. 717–729. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58808-3_52

    Chapter  Google Scholar 

  24. Rosi, M., et al.: A computational study on the attack of nitrogen and oxygen atoms to toluene. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12953, pp. 620–631. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86976-2_42

    Chapter  Google Scholar 

  25. Rosi, M., et al.: A computational study on the insertion of N(\(^2\)D) into a C—H or C—C bond: the reactions of N(\(^2\)D) with benzene and toluene and their implications on the chemistry of Titan. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12251, pp. 744–755. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58808-3_54

    Chapter  Google Scholar 

  26. Balucani, N., et al.: A computational study of the reaction N(\(^2\)D) + C\(_6\)H\(_6\) leading to pyridine and phenylnitrene. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11621, pp. 316–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24302-9_23

    Chapter  Google Scholar 

  27. Loison, J., et al.: The neutral photochemistry of nitriles, amines and imines in the atmosphere of titan. Icarus 247, 218–247 (2015)

    Article  Google Scholar 

  28. Vuitton, V., Yelle, R., Klippenstein, S., Hörst, S., Lavvas, P.: Simulating the density of organic species in the atmosphere of titan with a coupled ion-neutral photochemical model. Icarus 324, 120–197 (2019)

    Article  Google Scholar 

  29. Stevenson, J., Lunine, J., Clancy, P.: Membrane alternatives in worlds without oxygen: creation of an azotosome. Sci. Adv. 1(1), e1400067 (2015)

    Article  Google Scholar 

  30. Cui, J., et al.: Analysis of titan’s neutral upper atmosphere from Cassini Ion neutral mass spectrometer measurements. Icarus 200(2), 581–615 (2009)

    Article  Google Scholar 

  31. Vuitton, V., Yelle, R., McEwan, M.: Ion chemistry and n-containing molecules in titan’s upper atmosphere. Icarus 191(2), 722–742 (2007)

    Article  Google Scholar 

  32. Magee, B.A., Waite, J.H., Mandt, K.E., Westlake, J., Bell, J., Gell, D.A.: INMS-derived composition of Titan’s upper atmosphere: analysis methods and model comparison. Planet. Space Sci. 57(14–15), 1895–1916 (2009)

    Article  Google Scholar 

  33. Müller-Wodarg, I., Griffith, C.A., Lellouch, E., Cravens, T.E.: Titan: Interior, Surface, Atmosphere, and Space Environment, vol. 14. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  34. Palmer, M.Y., et al.: Alma detection and astrobiological potential of vinyl cyanide on titan. Sci. Adv. 3(7), e1700022 (2017)

    Article  Google Scholar 

  35. Lai, J.Y., et al.: Mapping vinyl cyanide and other nitriles in Titan’s atmosphere using ALMA. Astron. J. 154(5), 206 (2017)

    Article  Google Scholar 

  36. Sims, I.R., et al.: Rate constants for the reactions of CN with hydrocarbons at low and ultra-low temperatures. Chem. Phys. Lett. 211(4–5), 461–468 (1993)

    Article  Google Scholar 

  37. Balucani, N., et al.: Crossed beam reaction of cyano radicals with hydrocarbon molecules. III. Chemical dynamics of vinylcyanide (C\(_2\)H\(_3\)CN; X\(^1\)A’) formation from reaction of CN (X\(^2\)\(\Sigma \)+) with ethylene, C\(_2\)H\(_4\) (X \(^1\)A\(_g\)). J. Chem. Phys. 113(19), 8643–8655 (2000)

    Google Scholar 

  38. Balucani, N., et al.: Formation of nitriles in the interstellar medium via reactions of cyano radicals, CN (X\(^2\)\(\Sigma \)+), with unsaturated hydrocarbons. Astrophys. J. 545(2), 892 (2000)

    Article  Google Scholar 

  39. Balucani, N., Asvany, O., Osamura, Y., Huang, L., Lee, Y., Kaiser, R.: Laboratory investigation on the formation of unsaturated nitriles in Titan’s atmosphere. Planet. Space Sci. 48(5), 447–462 (2000)

    Article  Google Scholar 

  40. Leonori, F., Petrucci, R., Wang, X., Casavecchia, P., Balucani, N.: A crossed beam study of the reaction CN+ C\(_2\)H\(_4\) at a high collision energy: the opening of a new reaction channel. Chem. Phys. Lett. 553, 1–5 (2012)

    Article  Google Scholar 

  41. Balucani, N., et al.: A combined crossed molecular beams and theoretical study of the reaction CN+ C\(_2\)H\(_4\). Chem. Phys. 449, 34–42 (2015)

    Article  Google Scholar 

  42. Vereecken, L., De Groof, P., Peeters, J.: Temperature and pressure dependent product distribution of the addition of CN radicals to C\(_2\)H\(_4\). Phys. Chem. Chem. Phys. 5(22), 5070–5076 (2003)

    Article  Google Scholar 

  43. Gannon, K.L., Glowacki, D.R., Blitz, M.A., Hughes, K.J., Pilling, M.J., Seakins, P.W.: H atom yields from the reactions of CN radicals with C\(_2\)H\(_2\), C\(_2\)H\(_4\), C\(_3\)H\(_6\), trans-2-C\(_4\)H\(_8\), and iso-C\(_4\)H\(_8\). J. Phys. Chem. A 111(29), 6679–6692 (2007)

    Article  Google Scholar 

  44. Geppert, W., et al.: Dissociative recombination of nitrile ions: DCCCN\(^+\) and DCCCND\(^+\). Astrophys. J. 613(2), 1302 (2004)

    Article  Google Scholar 

  45. Vigren, E., et al.: Dissociative recombination of nitrile ions with implications for Titan’s upper atmosphere. Planet. Space Sci. 60(1), 102–106 (2012)

    Article  Google Scholar 

  46. Butterfield, M.T., Yu, T., Lin, M.C.: Kinetics of CN reactions with allene, butadiene, propylene and acrylonitrile. Chem. Phys. 169(1), 129–134 (1993)

    Article  Google Scholar 

  47. Rosi, M., et al.: Possible scenarios for SiS formation in the interstellar medium: electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic sulphur and S\(_2\). Chem. Phys. Lett. 695, 87–93 (2018)

    Article  Google Scholar 

  48. Skouteris, D., et al.: Interstellar dimethyl ether gas-phase formation: a quantum chemistry and kinetics study. Mon. Not. R. Astron. Soc. 482(3), 3567–3575 (2019)

    Article  Google Scholar 

  49. Recio, P., et al.: A crossed molecular beam investigation of the N(\(^{2}\)D)+ pyridine reaction and implications for prebiotic chemistry. Chem. Phys. Lett. 779, 138852 (2021)

    Article  Google Scholar 

  50. Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993)

    Article  Google Scholar 

  51. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Article  Google Scholar 

  52. Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)

    Google Scholar 

  53. Woon, D.E., Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98(2), 1358–1371 (1993)

    Google Scholar 

  54. Kendall, R.A., Dunning Jr., T.H., Harrison, R.J.: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96(9), 6796–6806 (1992)

    Google Scholar 

  55. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90(4), 2154–2161 (1989). https://doi.org/10.1063/1.456010

    Article  Google Scholar 

  56. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94(14), 5523–5527 (1990). https://doi.org/10.1021/j100377a021

    Article  Google Scholar 

  57. Moore, C.E.: Atomic Energy Levels. US Department of Commerce, National Bureau of Standards (1949)

    Google Scholar 

  58. Frisch, M., et al.: Gaussian 09, rev. A. 02. Gaussian. Inc., Wallingford, CT (2009)

    Google Scholar 

  59. Schaftenaar, G., Noordik, J.H.: Molden: a pre-and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 14(2), 123–134 (2000)

    Article  Google Scholar 

  60. Schaftenaar, G., Vlieg, E., Vriend, G.: Molden 2.0: quantum chemistry meets proteins. J. Comput. Aided Mol. Des. 31(9), 789–800 (2017). https://doi.org/10.1007/s10822-017-0042-5

    Article  Google Scholar 

  61. Vanuzzo, G., et al.: The reaction N(\(^2\)D)+CH\(_2\)CHCN (vinylcyanide): a combined crossed-beams and theoretical study and implications for the atmosphere of Titan. J. Phys. Chem. A (submitted)

    Google Scholar 

  62. Marchione, D., et al.: Unsaturated dinitriles formation routes in extraterrestrial environments: a combined experimental and theoretical investigation of the reaction between cyano radicals and cyanoethene (C\(_2\)H\(_3\)CN). J. Phys. Chem. A. 126(22), 3569–3582 (2022). https://doi.org/10.1021/acs.jpca.2c01802

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Space Agency (ASI, DC-VUM-2017-034, Grant n\(^\circ \)2019-3 U.O Life in Space). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO). The authors thank the Herla Project - Università degli Studi di Perugia (http://www.hpc.unipg.it/hosting/vherla/vherla.html) for allocated computing time. The authors thank the Dipartimento di Ingegneria Civile ed Ambientale of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018-2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mancini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mancini, L., de Aragão, E.V.F., Vanuzzo, G. (2022). A Theoretical Investigation of the Reactions of N(\(^2\)D) and CN with Acrylonitrile and Implications for the Prebiotic Chemistry of Titan. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13378. Springer, Cham. https://doi.org/10.1007/978-3-031-10562-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10562-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10561-6

  • Online ISBN: 978-3-031-10562-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics