Skip to main content

Formation Routes of CO from O(1D)+Toluene: A Computational Study

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

The interaction between oxygen atoms in their first electronically excited state 1D with toluene has been characterized by electronic structure calculations. We focused our attention, in particular, on the different pathways leading to the formation of CO. Six different reaction channels have been investigated. Our results suggest that, while for accurate energies high level calculations, as CCSD(T), are necessary, in particular when strong correlation effects are present, for semi-quantitative results DFT methods are adequate and provide information useful when larger systems than toluene as polycyclic aromatic hydrocarbons are under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brezinsky, K.: The high-temperature oxidation of aromatic hydrocarbons. Prog. Energy Combust. 12, 1–24 (1986)

    Article  Google Scholar 

  2. Atkinson, R., Pitts, J.N.: Rate constants for the reaction of O(3P) atoms with Benzene and Toluene over the temperature range 299–440 K. Chem. Phys. Lett. 63, 485–489 (1979)

    Article  Google Scholar 

  3. Nicovich, J.M., Gump, C.A., Ravishankara, A.R.: Rates of reactions of O(3P) with Benzene and Toluene. J. Phys. Chem. 86, 1684–1690 (1982)

    Article  Google Scholar 

  4. Tappe, M., Schliephake, V., Wagner, H.: Gg. reactions of Benzene, Toluene and Ethylbenzene with Atomic Oxygen O(3P) in the Gas Phase Z. Phys. Chem. 162, 129–145 (1989)

    Google Scholar 

  5. Cavallotti, C., et al.: Relevance of the channel leading to Formaldehyde + Triplet Ethylidene in the O(3P)+Propene reaction under combustion conditions. J. Phys. Chem. Lett. 5, 4213–4218 (2014)

    Article  Google Scholar 

  6. Leonori, F., et al.: Experimental and theoretical studies on the dynamics of the O(3P) + Propene reaction: primary products, branching ratios, and role of intersystem crossing. J. Phys. Chem. C 119, 14632–14652 (2015)

    Article  Google Scholar 

  7. Gimondi, I., Cavallotti, C., Vanuzzo, G., Balucani, N., Casavecchia, P.: Reaction dynamics of O(3P)+Propyne: II. Primary products, branching ratios, and role of intersystem crossing from Ab initio coupled triplet/singlet potential energy surfaces and statistical calculations. J. Phys. Chem. A 120, 4619–4633 (2016)

    Article  Google Scholar 

  8. Caracciolo, A., et al.: Combined experimental and theoretical studies of the O(3P) + 1-Butene reaction dynamics: primary products, branching ratios and role of intersystem crossing. J. Phys. Chem. A 123, 9934–9956 (2019)

    Article  Google Scholar 

  9. Cavallotti, C., et al.: A theoretical study of the extent of intersystem crossing in the O(3P) + C6H6 reaction with experimental validation. J. Phys. Chem. Lett. 11, 9621–9628 (2020)

    Article  Google Scholar 

  10. Vanuzzo, G., et al.: Crossed-beam and theoretical studies of the O(3P, 1D) + Benzene reactions: primary products, branching fractions, and role of intersystem crossing. J. Phys. Chem. A 125, 8434–8453 (2021)

    Article  Google Scholar 

  11. Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    Article  Google Scholar 

  12. Chai, J.-D., Head-Gordon, M.: Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 128, 084106 (2008)

    Article  Google Scholar 

  13. Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980)

    Google Scholar 

  14. Frisch, M.J., Pople, J.A., Binkley, J.S.: Self-consistent molecular orbital methods 28. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984)

    Google Scholar 

  15. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)

    Article  Google Scholar 

  16. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)

    Article  Google Scholar 

  17. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32, 359–401 (1981)

    Article  Google Scholar 

  18. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: Quadratic configuration interaction. A general technique for determining electron correlation energies. Chem. Phys Lett. 157, 479–483 (1989)

    Google Scholar 

  19. Olsen, J., Jorgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104, 8007–8015 (1996)

    Article  Google Scholar 

  20. Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Google Scholar 

  21. de Petris, G., Cacace, F., Cipollini, R., Cartoni, A., Rosi, M., Troiani, A.: Experimental detection of theoretically predicted N2CO. Angew. Chem. 117, 466–469 (2005)

    Article  Google Scholar 

  22. De Petris, G., Rosi, M., Troiani, A.: SSOH and HSSO radicals: An experimental and theoretical study of [S2OH]0/+/- species. J. Phys. Chem. A 111, 6526–6533 (2007)

    Article  Google Scholar 

  23. Bartolomei, M., et al.: The intermolecular potential in NO-N2 and (NO-N2)+ systems: Implications for the neutralization of ionic molecular aggregates. PCCP 10, 5993–6001 (2008)

    Article  Google Scholar 

  24. Leonori, F., et al.: Observation of organosulfur products (thiovinoxy, thioketene and thioformyl) in crossed-beam experiments and low temperature rate coefficients for the reaction S(1D) + C2H4. PCCP 11, 4701–4706 (2009)

    Article  Google Scholar 

  25. Leonori, F., et al.: Crossed-beam and theoretical studies of the S(1D) + C2H2 reaction. J. Phys. Chem. A 113, 4330–4339 (2009)

    Article  Google Scholar 

  26. De Petris, G., Cartoni, A., Rosi, M., Barone, V., Puzzarini, C., Troiani, A.: The proton affinity and gas-phase basicity of sulfur dioxide. ChemPhysChem 12, 112–115 (2011)

    Article  Google Scholar 

  27. Berteloite, C., et al.: Low temperature kinetics, crossed beam dynamics and theoretical studies of the reaction S(1D) + CH4 and low temperature kinetics of S(1D) + C2H2. Phys. Chem. Chem. Phys. 13, 8485–8501 (2011)

    Article  Google Scholar 

  28. Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of Titan: Interaction of excited nirogen atoms with small hydrocarbons. LNCS 7333, 331–344 (2012)

    Google Scholar 

  29. Skouteris, D., Balucani, N., Faginas-Lago, N., Falcinelli, S., Rosi, M.: Dimerization of methanimine and its charged species in the atmosphere of Titan and interstellar/cometary ice analogs. Astron. Astrophys. 584, A76 (2015)

    Article  Google Scholar 

  30. Falcinelli, S., Rosi, M., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Stereoselectivity in autoionization reactions of hydrogenated molecules by metastable gas atoms: the role of electronic couplings. Chem. Eur. J. 22, 12518–12526 (2016)

    Article  Google Scholar 

  31. Troiani, A., Rosi, M., Garzoli, S., Salvitti, C., de Petris, G.: Vanadium Hydroxide Cluster Ions in the Gas Phase: Bond-Forming Reactions of Doubly-Charged Negative Ions by SO2-Promoted V-O Activation. Chem. Eur. J. 23, 11752–11756 (2017)

    Article  Google Scholar 

  32. Rosi, M., et al.: An experimental and theoretical investigation of 1-butanol pyrolysis. Front. Chem. 7, 326 (2019). https://doi.org/10.3389/fchem.2019.00326

    Article  Google Scholar 

  33. Sleiman, C., El Dib, G., Rosi, M., Skouteris, D., Balucani, N., Canosa, A.: Low Temperature Kinetics and Theoretical Study of the Reaction CN + CH3NH2: A Potential Source of Cyanamide and Methyl Cyanamide in the Interstellar Medium. PCCP 20, 5478–5489 (2018). https://doi.org/10.1039/c7cp05746f

    Article  Google Scholar 

  34. Rosi, M., et al.: Possible scenarios for SiS formation in the interstellar medium: electronic structure calculations of the potential energy surdaces for the reactions of the SiH radical with atomic sulphur and S2. Chem. Phys. Lett. 695, 87–93 (2018). https://doi.org/10.1016/j.cplett.2018.01.053

    Article  Google Scholar 

  35. Balucani, N., Skouteris, D., Ceccarelli, C., Codella, C., Falcinelli, S., Rosi, M.: A theoretical investigation of the reaction between the Amidogen, NH, and the ethyl, C2H5, radicals: a possible gas-phase formation route of interstellar and planetary Ethanimine. Molec. Astrophys. 13, 30–37 (2018). https://doi.org/10.1016/j.molap.2018.10.001

    Article  Google Scholar 

  36. Moore, C.E.: Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. N. 467, U.S., GPO, Washington, DC (1949)

    Google Scholar 

  37. Gaussian 09, et al. Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  38. Flükiger, P., Lüthi, H.P., Portmann, S., Weber, J., MOLEKEL 4.3: Swiss Center for Scientific Computing, Manno (Switzerland), (2000–2002)

    Google Scholar 

  39. Portmann, S., Lüthi, H. P., MOLEKEL: An Interactive Molecular Graphics Tool Chimia 54, 766–769 (2000)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the MUR (Italian Ministry of University and Research) for “PRIN 2017” funds, project MAGIC DUST, Grant Number 2017PJ5XXX. MR thanks the DICA, University of Perugia, for providing computing resources within the project “Dipartimenti di Eccellenza 2018–2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzio Rosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosi, M. et al. (2022). Formation Routes of CO from O(1D)+Toluene: A Computational Study. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13378. Springer, Cham. https://doi.org/10.1007/978-3-031-10562-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10562-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10561-6

  • Online ISBN: 978-3-031-10562-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics