Skip to main content

Optimization of the Training Dataset for Numerical Dispersion Mitigation Neural Network

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

We present an approach to construct the training dataset for the numerical dispersion mitigation network (NDM-net). The network is designed to suppress numerical error in the simulated seismic wavefield. The training dataset is the wavefield simulated using a fine grid, thus almost free from the numerical dispersion. Generation of the training dataset is the most computationally intense part of the algorithm, thus it is important to reduce the number of seismograms used in the training dataset to improve the efficiency of the NDM-net. In this work, we introduce the discrepancy between seismograms and construct the dataset, so that the discrepancy between the dataset and any seismogram is below the prescribed level.

V.L. developed the algorithm of optimal dataset construction under the support of RSF grant no. 22-11-00004. D.V. performed seismic modeling using NKS-30T cluster of the Siberian Supercomputer Center under the support of RSF grant no. 22-21-00738. Kseniia Gadylshina performed numerical experiments on NDM-net training under the support of the RSF grant no. 19-77-20004. Kirill Gadylshin optimized the NDM-net hyperparameters under the support of the grant for young scientists MK-3947.2021.1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198(1), 106–130 (2004)

    Article  MathSciNet  Google Scholar 

  2. Blanch, J., Robertsson, J., Symes, W.: Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysiscs 60(1), 176–184 (1995)

    Article  Google Scholar 

  3. Gadylshin, K., Lisitsa, V., Gadylshina, K., Vishnevsky, D., Novikov, M.: Machine learning-based numerical dispersion mitigation in seismic modelling. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12949, pp. 34–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86653-2_3

    Chapter  Google Scholar 

  4. Kaser, M., Dumbser, M., Puente, J.D.l., Igel, H.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes III. Viscoelastic attenuation. Geophys. J. Int. 168(1), 224–242 (2007). https://doi.org/10.1111/j.1365-246X.2006.03193.x

  5. Kaur, H., Fomel, S., Pham, N.: Overcoming numerical dispersion of finite-difference wave extrapolation using deep learning. In: SEG Technical Program Expanded Abstracts, pp. 2318–2322 (2019). https://doi.org/10.1190/segam2019-3207486.1

  6. Koene, E.F.M., Robertsson, J.O.A., Broggini, F., Andersson, F.: Eliminating time dispersion from seismic wave modeling. Geophys. J. Int. 213(1), 169–180 (2017)

    Article  Google Scholar 

  7. Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V.: Local time-space mesh refinement for simulation of elastic wave propagation in multi-scale media. J. Comput. Phys. 281, 669–689 (2015)

    Article  MathSciNet  Google Scholar 

  8. Levander, A.R.: Fourth-order finite-difference P-SV seismograms. Geophysics 53(11), 1425–1436 (1988)

    Article  Google Scholar 

  9. Lisitsa, V.: Dispersion analysis of discontinuous Galerkin method on triangular mesh for elastic wave equation. Appl. Math. Model. 40, 5077–5095 (2016). https://doi.org/10.1016/j.apm.2015.12.039

    Article  MathSciNet  MATH  Google Scholar 

  10. Lisitsa, V., Kolyukhin, D., Tcheverda, V.: Statistical analysis of free-surface variability’s impact on seismic wavefield. Soil Dyn. Earthq. Eng. 116, 86–95 (2019)

    Article  Google Scholar 

  11. Lisitsa, V., Tcheverda, V., Botter, C.: Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation. J. Comput. Phys. 311, 142–157 (2016)

    Article  MathSciNet  Google Scholar 

  12. Liu, Y.: Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling. Geophys. J. Int. 197(2), 1033–1047 (2014)

    Article  Google Scholar 

  13. Masson, Y.J., Pride, S.R.: Finite-difference modeling of Biot’s poroelastic equations across all frequencies. Geophysics 75(2), N33–N41 (2010)

    Article  Google Scholar 

  14. Mittet, R.: Second-order time integration of the wave equation with dispersion correction procedures. Geophysics 84(4), T221–T235 (2019)

    Article  Google Scholar 

  15. Pleshkevich, A., Vishnevskiy, D., Lisitsa, V.: Sixth-order accurate pseudo-spectral method for solving one-way wave equation. Appl. Math. Comput. 359, 34–51 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Saenger, E.H., Gold, N., Shapiro, S.A.: Modeling the propagation of the elastic waves using a modified finite-difference grid. Wave Motion 31, 77–92 (2000)

    Article  MathSciNet  Google Scholar 

  18. Siahkoohi, A., Louboutin, M., Herrmann, F.J.: The importance of transfer learning in seismic modeling and imaging. Geophysics 84, A47–A52 (2019). https://doi.org/10.1190/geo2019-0056.1

    Article  Google Scholar 

  19. Tarrass, I., Giraud, L., Thore, P.: New curvilinear scheme for elastic wave propagation in presence of curved topography. Geophys. Prospect. 59(5), 889–906 (2011). https://doi.org/10.1111/j.1365-2478.2011.00972.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Gadylshin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gadylshin, K., Lisitsa, V., Gadylshina, K., Vishnevsky, D. (2022). Optimization of the Training Dataset for Numerical Dispersion Mitigation Neural Network. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13378. Springer, Cham. https://doi.org/10.1007/978-3-031-10562-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10562-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10561-6

  • Online ISBN: 978-3-031-10562-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics