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Abstract. The concept of exploiting proven monotonicity for dimen-
sion reduction and elimination of partition sets is well known in the field
of Interval Arithmetic Branch and Bound (B&B). Part of the concepts
can be applied in simplicial B&B over a box. The focus of our research
is here on minimizing a function over a lower simplicial dimension fea-
sible set, like in blending and portfolio optimization problems. How can
monotonicity be detected and be exploited in a B&B context? We found
that feasible directions can be used to derive bounds on the directional
derivative. Specifically, Linear Programming can be used to detect the
sharpest bounds.

Keywords: Global optimization - Simplex + Branch and bound

1 Introduction

Monotonicity considerations to remove subsets and to reduce dimension has a
long tradition in Interval Arithmetic based branch and bound, see [4,8]. The
basic property is to be able to remove interior boxes where the function is mono-
tone over the box and to reduce the dimension with respect to monotone com-
ponents when a box facet is at the boundary of the search space.

Ideas of monotonicity were not investigated in the simplicial branch and
bound overview book [10]. More recently, [2,3,5,6] extended monotonicity con-
siderations towards simplicial partition sets. One of the main observations is that
if the function to be minimized, f, is monotonically increasing in a direction from
a facet of a simplicial partition set S towards its opposite vertex, then S can
be reduced to F and consequently, we have a simplicial dimension reduction.
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As was shown in [2], if F' is not border, i.e. not included in one of the faces of the
feasible set with the same dimension, then S can be removed from consideration.

The latter question is mainly convenient if the feasible set is a box, as consid-
ered in traditional simplicial B&B. However, if the feasible set is a simplex with
a dimension lower than that of the function to be minimized, the determination
of monotonicity and of a facet being border is more challenging. The focus of this
paper is mainly on these research questions. How to demonstrate monotonicity
and how to capture that a facet is border.

To investigate these question, Sect. 2 introduces mathematical properties of
monotonicity over simplicial sets. Section3 then discusses some special cases
together with LP and MIP models to find monotone directions. Section4
describes how to keep track of border facets, while Sect. 5 summarises our find-
ings.

2 Mathematical Notation and Properties

2.1 Notation

We consider the minimization of a continuously differentiable function f : R” —
R, over a feasible set A, which is an p—simplex, i.e. A := conv(W) is defined by
a set of p+ 1 affine independent vectors that serve as vertices

W= {vg,...,v,} CR",p<mn. (1)
The idea is to find or enclose all global minimum points of
min f(z),z € A. (2)

The consideration of n—dimensional functions over m < n lower dimensional
simplicial feasible area appears for instance in blending problems [1]. Our context
is that of a branch and bound algorithm to enclose all minimum points of f
on A. In contrast to the algorithms described in [10], the used partition sets
are m—simplices S, where m < p. This means S := conv(V) with V a set of
m + 1 = |V| vertices. The branch and bound algorithm works with a set A of
partition sets, which as a whole include all global minimum points.

Although we usually limit our context to the use of longest edge bisection,
where the longest edge (v, w) of a partition set S is bisected using mid-point
T = ’”'g“’, we pose the monotonicity question in a larger context where any
partition method may be used, as described in [7]. The set of evaluated points
that serve as vertices of the partition sets is denoted by X . Specifically, we focus
on dimension reduction due to monotonicity considerations, where a set V of
vertices of m—simplex S is reduced to V \ {v} and S is replaced by one (or
more) of its facets F' := conv(V \ {v}) for some v € V. Notice that F is an
(m — 1)-simplex. It may be clear that for m = 0, the 0—simplex S = conv({v})
is an individual point and does not have faces. Its dimension cannot be reduced.
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The centroid of m—simplex S = conv({vg,v1,...,vm}) is given by ¢ :=
ﬁ >iovj and the relative interior is defined by

m

rint(S) = {z =Y Ajwj, A > 0,5 =0,...,m, Y \; =1}, (3)

J 7=0

The relative boundary of a simplex S is defined by removing the relative
interior from it. Given a simplicial partition set S, we are interested in whether
its (simplicial) facets F are border with respect to the feasible set A. In general,
we can define a simplex to be border with respect to a simplicial feasible set.

Definition 1. Given p-simplex feasible area A. An m—simplex S with m < p
is called border with respect to A if there exists an m-simplex face ¢ of A, such
that S C .

One of the main questions is how to determine whether a facet of a sim-
plex is border in a numerically efficient way. Border facets and the concept of
monotonicity are used to reject a simplex or to reduce its simplicial dimension.

Relevant information is an enclosure G of the gradient Vf(z) C G :=
[G, G],Vz € S. Interval vector G can be calculated by Interval Automatic Dif-
ferentiation over the interval hull of a simplex S, see [9,11]. Now consider direc-
tional vector d as the difference between two points in S, then the corresponding

directional derivative d7 V f(x) is also included in the inner product

aTG = [@,W} -

> min{dG,, d;G;}, Y max{d;G,,d;Gi}| . (4)
i=1 i=1

2.2 Mathematical Properties on Monotonicity

The monotonicity is based on directional derivative bounds of (4). Notice that
condition 0 ¢ G is necessary to have monotonicity, but not sufficient. The ques-
tion is which direction d to consider. The most general result for an m—simplex
is the following.

Proposition 1. Let S C A be an m—simplex with gradient enclosure G. If
Ja,y € S, such that direction d = x —y has corresponding directional derivative
bounds (4) with 0 ¢ [dXG,dTG] then rint(S) does not contain a global minimum

point of (2).

Proof. Consider z € rint(.S). As z is in the relative interior, there exists a feasible
direction d in which lower function values can be found, i.e. 3¢ € R small enough,
such that z +ed € S and f(z 4+ ed) < f(z). So z cannot be a minimum point
of f. O

The elaboration for an algorithm depends on the choice of the direction d
and the way to compute it.
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Corollary 1. Let S C A be an m—simplex as partition set in a branch and
bound algorithm with corresponding gradient enclosure G. If the conditions of
Proposition 1 apply and S has no border facets, then S can be rejected.

The argument is that the relative boundary of S may contain a global minimum
point, but the same point is enclosed in the relative boundary of another partition
set.

Given that the minimum is not in rint(S), we have to decide which of the
facets to focus on. In [2], we made use of the following property in the design of
a specific algorithm.

Proposition 2. Given m—simplex S = conv(V) with centroid ¢ and a facet F
generated by removing vertexz v from V. Consider direction d = v—c. Ifd*G > 0,
then the facet F' contains all minimum points in S, i.e. argmin g f(z) C F'.

Practically, this means that S can be replaced by F if dG > 0. However,
a similar reasoning applies as in Corollary 1; if F' is a non-border facet, then
simplex S can be removed from further consideration in a branch and bound
context. The idea is again that faces of F' may contain the minimum. However,
because we are dealing with a partition, the same points are also included in
other simplicial partition sets.

Y

\x4

X3
%)

Fig. 1. Three partition sets generated by bisection, using bisection points xz3 and 4.
We focus on monotone directions in S.

Ezample 1. For the illustration of the concept, consider the simplices in Fig. 1.
It shows three partition sets generated by bisection, using bisection points xg
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and z4. Consider S = conv(V) with V = {v1, 3,24}, where we assume that
the orange direction provides a monotonously increasing direction. According to
Proposition 1, the interior of S does not contain a global minimum point. Let
the blue direction provide a direction d = v — ¢ for which the lower bound of (4)
is positive for facet F' = conv(V \ {v}) with v = 4. According to Proposition 2,
facet F' = conv({v1,x3}) contains all minimum points on S. Now, the border
considerations show that we even can remove S, as there is another partition set
at its left, that encloses all minimum points.

There are two questions we address in this paper.

— Is there a way to show that a direction d in which f is monotonic on S exists?
— The direction d = v — ¢ for a facet F' may not be monotonically increasing,
but can there be another direction from facet F' to vertex v?

3 Cases of Directional Derivatives

To prove that there exists a monotone direction in an m—simplex, at least we
should have 0 ¢ G. This is a necessary, but not sufficient condition for an
m—simplex, m < n. To prove that such a direction exists, according to Propo-
sition 1, we need to find a direction d = x — y, with =,y € S corresponding to a
positive lower bound of the directional derivative

0<d"G =Y min{d;G, d:G;}. (5)

i=1

Finding such a direction can be done by searching for the steepest monotone
direction maxyd’G. Consider the terms z; = min{d;G;,d;G;}. This means we
can write dT G = Z?:l z;. If we fix one of the point € S in d =  — y, then the
term z;(y) = min{(x; — y;)G;, (z; —y;)G;} is a concave function in y, as it is the
minimum of two affine functions. Therefore, the lower bound on the directional
derivative g(y) := (z —y)TG is a concave function being the sum of concave
terms. Similarly, it can be shown that the upper bound § on the directional
derivative is a convex function. We will illustrate this with an example and then
show how an LP problem can be formulated to find a maximum of g(y).

Ezample 2. Consider a simplex S = conv(V) with V = {vg,v1,vs} in RS with
vo = 0,v1 = (1,-2,3,-4,5,6)7 and vy = (0,3,-2,5,—4,-5)T. Ind =z — g,
we take as fixed point x = vy and vary y over the edge between v, and v, as
suggested in Proposition 2, so y = Av; + (1 — A)ve, 0 < A < 1. Figure 2 sketches
the oncave piece-wise linear shape of g as function of A and the convex shape
of g.

Looking for the existence of a positive value of d”G for some direction d, we
can fix x to the centroid in the directional vector, i.e. d = ¢—y. The maximization
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Fig. 2. Shape of concave g(y) = g(Avi+(1—A)v2 as function of A in orange and convex
g in purple (Color figure online).

of concave piece-wise linear function g(y) over y € S can be formulated as the
following LP problem.

)\j ZO,j:O,...,m
If there is no monotone direction, then y = ¢ and Y ;- z; = 0.

Ezample 3. For the illustration of the concept, consider the 2-simplex S defined
by three vertices V = {(4,0,1),(0,0,0)7,(3,2,1)T} in 3-dimensional space,
projected in 2D for Fig. 3. Its centroid is given by %(7, 2,2)”. Now let the bounds
of the gradient be given by G = (—3,1,0)T and G = (1,2,1)T. For none of the
directions d = v; — ¢, we have that lower bound dTG is positive. Running the LP
(6) provides us with a positive directional derivative bound of % for the point
y = (%,O, %)T The monotone direction ¢ — y is drawn by an orange arrow in
Fig. 3. This means that f is monotone on S. This illustrates that checking a
finite number of directions over the simplex is not necessarily sufficient to prove
that f is monotone. The LP (6) provides a numerical proof of f being monotone
over S or not. Notice again that y = ¢ is a feasible solution of the LP yielding
an objective function value of zero as soon as monotonicity cannot be proven.
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V2

Fig. 3. 2D image of the 2-simplex S. The point y provides a positive lower bound on
the directional derivative in direction d = ¢ — y.

Following the line of reasoning of the example, according to Proposition 1, we
can conclude that simplex S can be replaced by its facets. Now at least one of the
facets is of interest, although that cannot be concluded by only considering the
directions d = v—c for this specific example. The question is now whether there is
a monotone direction from a vertex v to a point y on the facet F' = conv(V\{v})
for which d = v — y has a positive lower bound on the directional derivative
d"G > 0. If such direction can be found, according to a similar reasoning as in
Proposition 2, the minimum of the simplex is in F.

To answer the question whether such a direction would exist, we can solve the
following LP for a specific facet F' maximizing the lower bound of a directional
derivative. Consider now the ordered vertex set V := {uvg,v1,...,v} and the
vertex set of F given as {v1,...,vn} := V\{vg}. Focusing on the direction vg—y
with y = 3"} Ajv;, we can demonstrate that there is a (maximum) positive
directional derivative, if it exists, by solving the LP
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If the result is positive, we have proven all minima of f over S are on F.

Ezample 4. We can now show how LP (7) is working, following the illustration in
Fig. 3 for facet F' = conv{vg,v1}. Although the lower bound on the directional
derivative of d = vy — ¢ is not positive, the LP will provide a solution y =
(3,0, %)T with an objective function value of 2. The corresponding direction is
also illustrated with an arrow between (3,0,2)” and v, in Fig. 3.

In a procedure for searching for such a facet, in the worst case we need to solve
LP (7) m+1 times. Instead, we might solve only one Mixed Integer Programming
problem (MIP) where a binary variable §; selects the facet corresponding to the
most positive directional derivative.

MIP (8) can be used to replace LP problem (7) if such a monotonously
increasing direction towards one of the vertices exists. If this is not the case,
the solution is 0 with the direction d = 0. However, there still may exist an
increasing direction according to LP (6).

Ezample 5. For our example in Fig.3 with S = conv{vg, v1,v2} the MIP (8)
finds indeed the positive objective function value of Y . | z;, stating that the
facet corresponding to do = 1 provides the maximum derivative lower bound.

The two steps, looking whether a monotone direction exists and identifying
which facet contains all the minima (if any), can also be done in one step. Thus,
instead of solving LP (6) and (7) m+1 times (or MIP (8)), we can solve directly
one MIP as follows. Let d = x — y, where z,y € S, so ¢ = Z;nzo A;jv; and

m

y =71, ijvj. Consider direction d =z —y = 377" ((Aj — 7).
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/Lj,)\jE[O,].],j:l,...,m
5;€{0,1},j=1,....m

A solution with p, = 1 and p; = 0,5 # k represents a direction d pointing
to vertex vy. A solution with Ay = 1 and A\; = 0,5 # k represents a direction
pointing from vertex vi,. We connect u; with binary variables d; such that d; =1
implies p; = 1. The inequality > . ; z; > & with € > 0 assures d is a monotone
direction. Moreover, it forces p # A, because otherwise z = 0 as well. If no
monotone direction exists, (9) has no feasible solution.

The objective is to maximize the sum of §;, meaning that we aim at finding a
monotone direction with g = 1 corresponding to d; = 1. In this case, we know
that facet F = conv(V \ {vx}) contains all minima according to Proposition 2. If
the objective is zero, there is no facet containing all the minima, i.e. there is no
0r = 1, but there is a monotone direction d.

Ezample 6. Following our example in Fig.3 with S = conv{vg,v1,vs} the MIP
(9) finds the positive objective function value 1 for >, z;, stating that the facet
corresponding to do = 1 provides a positive directional derivative for d = vy —vy.
Notice, that this direction is not the maximum directional derivative, but still
positive, which is the main question.

Interestingly, solving the LP-s and MIP-s in Matlab, the necessary time for
this example was counter-intuitive: LP (6) 0.521, LP (7) 0.033, while MIP (9)
0.048s.

We investigated whether the counter-intuitive result of a smaller solution
time for the MIP than for the LP is a general trend. Therefore, we compared
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the solution time and effectiveness of formulations (6), (7), (8) and (9). We took
447 simplices from a branch and bound process over the functions Hartman 3, 4
and 6 that, as the name suggests, have dimension 3, 4 and 6. We have used the
routines linprog and intlinprog in Matlab setting IntegerTolerance to le—6
and ConstraintTolerance to le—8. The result is given in Table 1.

Table 1. Time and effectiveness of the LP and MIP formulations

'LP (6) | LP (7) | MIP (8) MIP (9)

Hartman 8

Monotone dir exists 81.6% | — - 77.6%
No monotone dir 18.4% |- - 18.4%
Mon.neg.dir.from_F exists | — 73.5% |73.5% |69.4%
No Mon.dir.from_F exists | — 24.5% | 24.5% |18.4%
Best result not found 2.0% |2.0% 4.1%

Time 0.018 |0.029 |0.009 0.012

Hartman 4

Monotone dir exists 92.3% |- - 80.2%
No monotone dir 7% |- - 7.7%

Mon.neg.dir.from_F exists | — 67.0% 60.4% |57.1%
No Mon.dir.from_F exists | — 33.0% [33.0% |23.1%
Best result not found - - 6.6% 12.1%
Time 0.014 |0.030 | 0.008 0.016
Hartman 6

Monotone dir exists 98.0% | — - 87.3%
No monotone dir 2.0% |- - 2.0%

Mon.neg.dir.from_F exists | — 83.1% |73.0% |72.6%
No Mon.dir.from_F exists | — 16.9% |16.9% | 14.7%
Best result not found - - 10.1% 10.7%
Time 0.015 |0.038 |0.009 0.011

In each line of the table we give for the LP and MIP formulations the per-
centage of the effectiveness measured as proven monotonicity. For instance, for
problem Hartman 3, LP (6) proved in 81.6% that there is a monotone directional
derivative.

We can prove there is a monotone decreasing direction from any facet by
solving LP (7) for all vertices, or by solving any of the MIP-s once. Comparing
the formulations, LP (7) is the strongest, while MIP (9) is the weakest due to
the € in its formulations, which is hard to set together with the tolerances. The
percentage development shows that, as the found monotone directions are less
and less solving LP (7), MIP (8) and MIP (9), and the percentage where the
best results are not found goes up in the same order.
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Surprisingly, the average computing time is the smallest for MIP (8), followed
by MIP (9) or LP (6), and the slowest is LP (7). The latter is no surprise as in
that case we added up the time needed to solve LP (7) for all facets, or until it
found a monotone decreasing direction from a facet.

4 Keeping Track of Border Facets

110

Vo

100

V2

Fig. 4. Faces of the feasible set with bisection points z3 and x4.

For a box constrained feasible set, finding the border status of a partition set
is relatively easy, as it is determined by lower and upper bounds on the com-
ponents and the correspondence with the simplicial partition sets. To determine
the border status of a given facet in a simplicial feasible set, we use a labelling
system to find out which minimum dimensional face of A the F' is included in.
This is done by assigning to each face ¢ of feasible set A = conv(WW) a label
B(p), starting with the vertex faces labeled B(v;) = 0...010...0 where the only 1
is the jth bit, for j = 0,...,n. Each face ¢, which is a convex combination of
vertices V C W, the corresponding bit-string B(¢) has a value 1 for each vertex
v € V in the same position as in B(v). For instance, in Fig.4, the edge (v, v2)
has label 011, and the simplex A has label 111. In fact, for an m-simplex face ¢
of the feasible set, its label is given by the bitwise OR operation (BitOr) of the
label of all its vertices. The complete face graph is given in Fig. 5 for a 4-vertex
simplex.

In a bisection refinement, the label can easily be determined. After bisecting
the original set of vertices W, we store the bisection points in set X. For instance
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in Fig. 4, we have X = {vg, v1,v2,z3,24}. We label all generated points z € X,
which serve as vertices for the partition sets. The label of point z is the same
as the label of the minimum dimensional face ¢ of the feasible set z is in. For
instance, the label of x3 is 101, the same as the label of face conv(vp, v2). During
bisection, a new vertex z = 5% gets label B(x) = BitOr(B(v), B(w)).

Number of vertices

4

Fig. 5. Face graph for a 3-simplex. Binary boxed labels for each face.

Given an m—simplex S = conv(V), the question is what is the label of the
(smallest dimensional) face ¢ it is included in. This is determined by the label
B(p) = BitOr(B(V)), to be interpreted as a bitor on all its vertex labels. The
number of ones of a bitstring B(y) is denoted by |B(y)|, giving the number of
vertices of . According to Definition 1, m—simplex S is border if there exists
an m—simplex face ¢ of the feasible set including S (m < p).

Proposition 3. Given m—simplex S = conv(V) with m < p, if
|BitOr(B(V))| = m + 1, then simplex S is border.

Proof. Consider the face ¢, which is the minimal dimensional face containing S,
i.e. label B(y) = BitOr(B(V)). As |BitOr(B(V))| = m + 1, we have |B(y)| =
m 4+ 1, thus ¢ is an m—simplex. Therefore, S is enclosed by an m—simplex face
of the feasible set and thus is border.
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For example in Fig. 4, the edge (z3,v2) is border, as |BitOr(B({z3,v2}))| =
|BitOr(101,001)| = |101| = 2 corresponding to face conv({vg, v2}). In contrast,
edge (x3,x4) is not border, because |BitOr(B({z3,z4}))| = |111| = 3 # 2. In
fact, the minimum dimensional face it is included in, is A itself.

5 Conclusions

The interest in monotonicity in simplicial branch and bound is relatively recent.
Given bounds on the gradient, the essential idea is that we have to check bounds
on the directional derivative for a feasible direction related to the simplicial
dimension of a partition set. In this paper, we show that the determination of
monotonicity of a function over a simplicial partition set can be done by solving
an LP problem. Moreover, it is possible for a facet to find the highest lower
bound based on a specific LP. The outcome determines, whether it is possible
to reduce the dimension of the simplicial partition set or to decide to remove it
from further consideration. Several steps can be combined by solving a specific
MIP problem.

For the decision on the removal of a simplex, it is relevant whether a facet is
border with respect to the feasible set. For a box constrained feasible set this is
relatively easy. This paper shows that by consistently labeling points that serve
as vertices, it is possible to determine a facet is border or not.

In our future work, we implement the LP type of tests in a simplicial branch
and bound framework to investigate whether the number of generated simplices
is decreasing compared to an algorithm, where one direction is tested per facet.
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