Abstract
We have here performed a campaign of first-principles calculations comparing the effect of confinement in two \(\text {ABO}_{3}\)-perovskites, \(\text {SrTiO}_{3}\) and \(\text {BaSnO}_{3}\). The study is motivated by the quest of novel materials for daytime radiative cooling devices, a recently suggested mechanism to passively cool down the temperature of sky facing objects (mainly buildings and constructions). In particular, after assessing the computational setup for the calculation of our structures, we have similarly calculated the bandstructure of 3D, 2D, and 0D systems. We both employed standard density functional theory and meta-GGA methods to do it and discussed pros and cons of the two approaches. Finally, we discuss the possible applicability of 0D species as materials for radiative cooling as function of a large and direct bandgap.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mutschler, R., Rüdisüli, M., Heer, P., Eggimann, S.: Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake. Appl. Ener. 288, 116636 (2021)
Calm, J.M.: Emissions and environmental impacts from air-conditioning and refrigeration systems. Int. J. Refrig. 25(3), 293–305 (2002)
Fabiani, C., Pisello, A.L., Bou-Zeid, E., Yang, J., Cotana, F.: Adaptive measures for mitigating urban heat islands: the potential of thermochromic materials to control roofing energy balance. Appl. Ener. 247, 155–170 (2019)
Paolini, R., et al.: The hygrothermal performance of residential buildings at urban and rural sites: Sensible and latent energy loads and indoor environmental conditions. Energ. Build. 152, 792–803 (2017)
Kousis, I., Pigliautile, I., Pisello, A.L.: Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Sci. Rep. 11(1), 1–17 (2021)
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cell. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)
Giorgi, G., Fujisawa, J.-I., Segawa, H., Yamashita, K.: Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4(24), 4213–4216 (2013)
Giorgi, G., Fujisawa, J.-I., Segawa, H., Yamashita, K.: Cation role in structural and electronic properties of 3D organic-inorganic halide perovskites: a DFT analysis. J. Phys. Chem. C 118(23), 12176–12183 (2014)
Kawai, H., Giorgi, G., Marini, A., Yamashita, K.: The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction. Nano Lett. 15(5), 3103–3108 (2015)
Giorgi, G., Yamashita, K.: Organic-inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. J. Mater. Chem. A 3(17), 8981–8991 (2015)
Giorgi, G., Fujisawa, J.-I., Segawa, H., Yamashita, K.: Organic-inorganic hybrid lead iodide perovskite featuring zero dipole moment guanidinium cations: a theoretical analysis. J. Phys. Chem. C 119(9), 4694–4701 (2015)
Hata, T., Giorgi, G., Yamashita, K.: The effects of the organic-inorganic interactions on the thermal transport properties of \({\rm CH}_{3}{\rm NH}_{3}{\rm PbI}_{3}\). Nano Lett. 16(4), 2749–2753 (2016)
Giorgi, G., Yamashita, K.: Alternative, lead-free, hybrid organic-inorganic perovskites for solar applications: a DFT analysis. Chem. Lett. 44(6), 826–828 (2015)
Giorgi, G., Yamashita, K.: Zero-dimensional hybrid organic-inorganic halide perovskite modeling: insights from first principles. J. Phys. Chem. Lett. 7(5), 888–899 (2016)
Giorgi, G., Yamashita, K.: Zero-dipole molecular organic cations in mixed organic-inorganic halide perovskites: possible chemical solution for the reported anomalous hysteresis in the current-voltage curve measurements. Nanotechnology 26(44), 442001 (2015)
Hata, T., Giorgi, G., Yamashita, K., Caddeo, C., Mattoni, A.: Development of a classical interatomic potential for \({\rm MAPbBr}_{3}\). J. Phys. Chem. C 121(7), 3724–3733 (2017)
Palummo, M., Varsano, D., Berríos, E., Yamashita, K., Giorgi, G.: Halide PB-free double-perovskites: ternary vs. quaternary stoichiometry. Energies 13(14), 3516 (2020)
Giorgi, G., Yoshihara, T., Yamashita, K.: Structural and electronic features of small hybrid organic-inorganic halide perovskite clusters: a theoretical analysis. Phys. Chem. Chem. Phys. 18(39), 27124–27132 (2016)
Manzhos, S., Giorgi, G., Lüder, J., Ihara, M.: Modeling of plasmonic properties of nanostructures for next generation solar cells and beyond. Adv. Phys. X 6(1), 1908848 (2021)
Giorgi, G.: Structural and electronic features of \({\rm Si/CH}_{3}{\rm NH}_{3}{\rm PbI}_{3}\) interfaces with optoelectronic applicability: Insights from first-principles. Nano Energy 67, 104166 (2020)
Giorgi, G., Yamashita, K., Segawa, H.: First-principles investigation of the Lewis acid-base adduct formation at the methylammonium lead iodide surfaces. Phys. Chem. Chem. Phys. 20(16), 11183–11195 (2018)
Manzhos, S., et al.: Materials design and optimization for next-generation solar cell and light-emitting technologies. J. Phys. Chem. Lett. 12(19), 4638–4657 (2021)
Catalanotti, S., Cuomo, V., Piro, G., Ruggi, D., Silvestrini, V., Troise, G.: The radiative cooling of selective surfaces. Sol. Energy 17(2), 83–89 (1975)
Granqvist, C.G., Hjortsberg, A.: Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. J. Appl. Phys. 52(6), 4205–4220 (1981)
Raman, A.P., Anoma, M.A., Zhu, L., Rephaeli, E., Fan, S.: Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014)
Rephaeli, E., Raman, A., Fan, S.: Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013)
Hossain, Md.M., Gu, M.: Radiative cooling: principles, progress, and potentials. Adv. Sci. 3(7), 1500360 (2016)
Kou, J.-L., Jurado, Z., Chen, Z., Fan, S., Minnich, A.J.: Daytime radiative cooling using near-black infrared emitters. ACS Photon. 4(3), 626–630 (2017)
Zhao, B., Hu, M., Ao, X., Chen, N., Pei, G.: Radiative cooling: a review of fundamentals, materials, applications, and prospects. Appl. Energy 236, 489–513 (2019)
Li, Z., Chen, Q., Song, Y., Zhu, B., Zhu, J.: Fundamentals, materials, and applications for daytime radiative cooling. Adv. Mater. Technol. 5(5), 1901007 (2020)
Li, W., Dong, M., Fan, L., John, J.J., Chen, Z., Fan, S.: Nighttime radiative cooling for water harvesting from solar panels. ACS Photon. 8(1), 269–275 (2020)
Huang, Z., Ruan, X.: Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transfer 104, 890–896 (2017)
Zhai, Y., et al.: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017)
Jeon, S., et al.: Multifunctional daytime radiative cooling devices with simultaneous light-emitting and radiative cooling functional layers. ACS Appl. Mater. Interfaces 12(49), 54763–54772 (2020)
Son, S., et al.: Colored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative cooling. Nano Energy 79, 105461 (2021)
Kecebas, M.A., Menguc, M.P., Kosar, A., Sendur, K.: Passive radiative cooling design with broadband optical thin-film filters. J. Quant. Spectrosc. Radiat. Transf. 198, 179–186 (2017)
Garshasbi, S., Santamouris, M.: Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating. Sol. Energy Mater. Sol. Cells 191, 21–32 (2019)
Taflove, A., Hagness, S.C., Piket-May, M.: Computational electromagnetics: the finite-difference time-domain method. Electr. Eng. Handb. 3, 629–670 (2005)
Taflove, A., Brodwin, M.E.: Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 23(8), 623–630 (1975)
Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)
Vinattieri, A., Giorgi, G.: Halide perovskites for photonics: recent history and perspectives. In: Halide Perovskites for Photonics, vol. 1, pp. 1–28. AIP Publishing LLC, Melville (2021)
Tong, Z., Peoples, J., Li, X., Yang, X., Bao, H., Ruan, X.: Atomistic characteristics of ultra-efficient radiative cooling paint pigments: the case study of \({\rm BaSO}_{4}\). Mater. Today Phys. 24, 100658 (2022)
Tsai, M.-H., Yeh, J.-W.: High-entropy alloys: a critical review. Mater. Res. Lett. 2(3), 107–123 (2014)
George, E.P., Raabe, D., Ritchie, R.O.: High-entropy alloys. Nat. Rev. Mater. 4(8), 515–534 (2019)
Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., Yang, Y.: High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016)
Rost, C.M., et al.: Entropy-stabilized oxides. Nat. Commun. 6(1), 1–8 (2015)
Albedwawi, S.H., AlJaberi, A., Haidemenopoulos, G.N., Polychronopoulou, K.: High entropy oxides-exploring a paradigm of promising catalysts: a review. Mater. Des. 202, 109534 (2021)
Edalati, P., Wang, Q., Razavi-Khosroshahi, H., Fuji, M., Ishihara, T., Edalati, K.: Photocatalytic hydrogen evolution on a high-entropy oxide. J. Mater. Chem. A 8(4), 3814–3821 (2020)
Zhao, C., Ding, F., Lu, Y., Chen, L., Hu, Y.-S.: High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020)
Witte, R., et al.: High-entropy oxides: an emerging prospect for magnetic rare-earth transition metal perovskites. Phys. Rev. Mater. 3(3), 034406 (2019)
Sarkar, A., et al.: High entropy oxides for reversible energy storage. Nat. Commun. 9(1), 1–9 (2018)
Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48(17), 13115–13118 (1993)
Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251–1426 (1994)
Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)
Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)
Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)
Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)
Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)
Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124(22), 221101 (2006)
Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)
Goldschmidt, V.M.: Die gesetze der krystallochemie. Naturwissenschaften 14(21), 477–485 (1926)
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976)
Hachemi, A., Hachemi, H., Ferhat-Hamida, A., Louail, L.: Elasticity of \({\rm SrTiO}_{3}\) perovskite under high pressure in cubic, tetragonal and orthorhombic phases. Phys. Scr. 82(2), 025602 (2010)
Jain, A., et al.: Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1), 011002 (2013)
Moreira, E., et al.: Structural and optoelectronic properties, and infrared spectrum of cubic \({\rm BaSnO}_{3}\) from first principles calculations. J. Appl. Phys. 112(4), 043703 (2012)
Piskunov, S., Heifets, E., Eglitis, R.I., Borstel, G.: Bulk properties and electronic structure of \({\rm SrTiO}_{3}\), \({\rm BaTiO}_{3}\), \({\rm PbTiO}_{3}\) perovskites: an ab initio HF/DFT study. Comput. Mater. Sci. 29(2), 165–178 (2004)
Bévillon, É., Chesnaud, A., Wang, Y., Dezanneau, G., Geneste, G.: Theoretical and experimental study of the structural, dynamical and dielectric properties of perovskite \({\rm BaSnO}_{3}\). J. Phys.: Condens. Matter 20(14), 145217 (2008)
Abramov, Y.A., Tsirelson, V.G., Zavodnik, V.E., Ivanov, S.A., Brown, I.D.: The chemical bond and atomic displacements in \({\rm SrTiO}_{3}\) from X-ray diffraction analysis. Acta Crystallogr. B 51(6), 942–951 (1995)
Farfán, J.C., Rodriguez, J.A., Fajardo, F., Lopez, E.V., Tellez, D.A.L., Roa-Rojas, J.: Structural properties, electric response and electronic feature of \({\rm BaSnO}_{3}\) perovskite. Physica B 404(18), 2720–2722 (2009)
Mountstevens, E.H., Attfield, J.P., Redfern, S.A.T.: Cation-size control of structural phase transitions in tin perovskites. J. Phys.: Condens. Matter 15(49), 8315 (2003)
Van Benthem, K., Elsässer, C., French, R.H.: Bulk electronic structure of \({\rm SrTiO}_{3}\): experiment and theory. J. Appl. Phys. 90(12), 6156–6164 (2001)
Shan, C., et al.: Optical and electrical properties of sol-gel derived Ba\(_{1-x}\)La\(_x\)SnO\(_3\) transparent conducting films for potential optoelectronic applications. J. Phys. Chem. C 118(13), 6994–7001 (2014)
Lebens-Higgins, Z., et al.: Direct observation of electrostatically driven band gap renormalization in a degenerate perovskite transparent conducting oxide. Phys. Rev. Lett. 116(2), 027602 (2016)
Smith, I.C., Hoke, E.T., Solis-Ibarra, D., McGehee, M.D., Karunadasa, H.I.: A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53(42), 11232–11235 (2014)
Tsai, H., et al.: High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536(7616), 312–316 (2016)
Palummo, M., Postorino, S., Borghesi, C., Giorgi, G.: Strong out-of-plane excitons in 2D hybrid halide double perovskites. Appl. Phys. Lett. 119(5), 051103 (2021)
Giorgi, G., Yamashita, K., Palummo, M.: Nature of the electronic and optical excitations of Ruddlesden-Popper hybrid organic-inorganic perovskites: the role of the many-body interactions. J. Phys. Chem. Lett. 9(19), 5891–5896 (2018)
Folpini, G., et al.: Band splitting and plurality of excitons in Ruddlesden-Popper metal halides. ChemRxiv 10.26434/chemrxiv-2021-qcm36-v2 (2021)
Ruddlesden, S.N., Popper, P.: The compound \({\rm Sr}_{3}{\rm Ti}_{2}{\rm O}_{7}\) and its structure. Acta Crystallogr. 11(1), 54–55 (1958)
Reshak, A.H., Auluck, S., Kityk, I.: Electronic band structure and optical properties of Sr\(_{n+1}\)Ti\(_n\)O\(_{3n+1}\) Ruddlesden-Popper homologous series. Jpn. J. Appl. Phys. 47(7R), 5516 (2008)
Lee, C.-H., et al.: Effect of reduced dimensionality on the optical band gap of \({\rm SrTiO}_{3}\). Appl. Phys. Lett. 102(12), 122901 (2013)
Li, Y., Zhang, L., Ma, Y., Singh, D.J.: Tuning optical properties of transparent conducting barium stannate by dimensional reduction. APL Mater. 3(1), 011102 (2015)
Sanchez, F., Ocal, C., Fontcuberta, J.: Tailored surfaces of perovskite oxide substrates for conducted growth of thin films. Chem. Soc. Rev. 43(7), 2272–2285 (2014)
Fan, D., et al.: Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Appl. Catal. B 295, 120285 (2021)
Acknowledgments
The authors thank the ERC Stg Project HELIOS (GA 101041255, PI dr. A.L. Pisello) funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. G.G. and C.B. acknowledge ISCRA B, and C initiatives for awarding access to computing resources on m100 at CINECA SuperComputer Center, Italy. G.G. thanks the Dipartimento di Ingegneria Civile e Ambientale of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018–2022”. Authors are similarly grateful to Prof. L. Latterini (Dept of Chemistry, Biology and Biotechnology, Perugia University) for the very fruitful scientific discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Borghesi, C., Fabiani, C., Pisello, A.L., Giorgi, G. (2022). Quantum Confinement Effects in Materials for Daytime Radiative Cooling: An Ab-initio Investigation. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13382. Springer, Cham. https://doi.org/10.1007/978-3-031-10592-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-10592-0_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10591-3
Online ISBN: 978-3-031-10592-0
eBook Packages: Computer ScienceComputer Science (R0)