Skip to main content

Quantum Confinement Effects in Materials for Daytime Radiative Cooling: An Ab-initio Investigation

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

We have here performed a campaign of first-principles calculations comparing the effect of confinement in two \(\text {ABO}_{3}\)-perovskites, \(\text {SrTiO}_{3}\) and \(\text {BaSnO}_{3}\). The study is motivated by the quest of novel materials for daytime radiative cooling devices, a recently suggested mechanism to passively cool down the temperature of sky facing objects (mainly buildings and constructions). In particular, after assessing the computational setup for the calculation of our structures, we have similarly calculated the bandstructure of 3D, 2D, and 0D systems. We both employed standard density functional theory and meta-GGA methods to do it and discussed pros and cons of the two approaches. Finally, we discuss the possible applicability of 0D species as materials for radiative cooling as function of a large and direct bandgap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mutschler, R., Rüdisüli, M., Heer, P., Eggimann, S.: Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake. Appl. Ener. 288, 116636 (2021)

    Google Scholar 

  2. Calm, J.M.: Emissions and environmental impacts from air-conditioning and refrigeration systems. Int. J. Refrig. 25(3), 293–305 (2002)

    Article  Google Scholar 

  3. Fabiani, C., Pisello, A.L., Bou-Zeid, E., Yang, J., Cotana, F.: Adaptive measures for mitigating urban heat islands: the potential of thermochromic materials to control roofing energy balance. Appl. Ener. 247, 155–170 (2019)

    Article  Google Scholar 

  4. Paolini, R., et al.: The hygrothermal performance of residential buildings at urban and rural sites: Sensible and latent energy loads and indoor environmental conditions. Energ. Build. 152, 792–803 (2017)

    Article  Google Scholar 

  5. Kousis, I., Pigliautile, I., Pisello, A.L.: Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Sci. Rep. 11(1), 1–17 (2021)

    Article  Google Scholar 

  6. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cell. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  Google Scholar 

  7. Giorgi, G., Fujisawa, J.-I., Segawa, H., Yamashita, K.: Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4(24), 4213–4216 (2013)

    Article  Google Scholar 

  8. Giorgi, G., Fujisawa, J.-I., Segawa, H., Yamashita, K.: Cation role in structural and electronic properties of 3D organic-inorganic halide perovskites: a DFT analysis. J. Phys. Chem. C 118(23), 12176–12183 (2014)

    Article  Google Scholar 

  9. Kawai, H., Giorgi, G., Marini, A., Yamashita, K.: The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction. Nano Lett. 15(5), 3103–3108 (2015)

    Article  Google Scholar 

  10. Giorgi, G., Yamashita, K.: Organic-inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. J. Mater. Chem. A 3(17), 8981–8991 (2015)

    Article  Google Scholar 

  11. Giorgi, G., Fujisawa, J.-I., Segawa, H., Yamashita, K.: Organic-inorganic hybrid lead iodide perovskite featuring zero dipole moment guanidinium cations: a theoretical analysis. J. Phys. Chem. C 119(9), 4694–4701 (2015)

    Article  Google Scholar 

  12. Hata, T., Giorgi, G., Yamashita, K.: The effects of the organic-inorganic interactions on the thermal transport properties of \({\rm CH}_{3}{\rm NH}_{3}{\rm PbI}_{3}\). Nano Lett. 16(4), 2749–2753 (2016)

    Article  Google Scholar 

  13. Giorgi, G., Yamashita, K.: Alternative, lead-free, hybrid organic-inorganic perovskites for solar applications: a DFT analysis. Chem. Lett. 44(6), 826–828 (2015)

    Article  Google Scholar 

  14. Giorgi, G., Yamashita, K.: Zero-dimensional hybrid organic-inorganic halide perovskite modeling: insights from first principles. J. Phys. Chem. Lett. 7(5), 888–899 (2016)

    Article  Google Scholar 

  15. Giorgi, G., Yamashita, K.: Zero-dipole molecular organic cations in mixed organic-inorganic halide perovskites: possible chemical solution for the reported anomalous hysteresis in the current-voltage curve measurements. Nanotechnology 26(44), 442001 (2015)

    Google Scholar 

  16. Hata, T., Giorgi, G., Yamashita, K., Caddeo, C., Mattoni, A.: Development of a classical interatomic potential for \({\rm MAPbBr}_{3}\). J. Phys. Chem. C 121(7), 3724–3733 (2017)

    Article  Google Scholar 

  17. Palummo, M., Varsano, D., Berríos, E., Yamashita, K., Giorgi, G.: Halide PB-free double-perovskites: ternary vs. quaternary stoichiometry. Energies 13(14), 3516 (2020)

    Article  Google Scholar 

  18. Giorgi, G., Yoshihara, T., Yamashita, K.: Structural and electronic features of small hybrid organic-inorganic halide perovskite clusters: a theoretical analysis. Phys. Chem. Chem. Phys. 18(39), 27124–27132 (2016)

    Article  Google Scholar 

  19. Manzhos, S., Giorgi, G., Lüder, J., Ihara, M.: Modeling of plasmonic properties of nanostructures for next generation solar cells and beyond. Adv. Phys. X 6(1), 1908848 (2021)

    Google Scholar 

  20. Giorgi, G.: Structural and electronic features of \({\rm Si/CH}_{3}{\rm NH}_{3}{\rm PbI}_{3}\) interfaces with optoelectronic applicability: Insights from first-principles. Nano Energy 67, 104166 (2020)

    Google Scholar 

  21. Giorgi, G., Yamashita, K., Segawa, H.: First-principles investigation of the Lewis acid-base adduct formation at the methylammonium lead iodide surfaces. Phys. Chem. Chem. Phys. 20(16), 11183–11195 (2018)

    Article  Google Scholar 

  22. Manzhos, S., et al.: Materials design and optimization for next-generation solar cell and light-emitting technologies. J. Phys. Chem. Lett. 12(19), 4638–4657 (2021)

    Article  Google Scholar 

  23. Catalanotti, S., Cuomo, V., Piro, G., Ruggi, D., Silvestrini, V., Troise, G.: The radiative cooling of selective surfaces. Sol. Energy 17(2), 83–89 (1975)

    Article  Google Scholar 

  24. Granqvist, C.G., Hjortsberg, A.: Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. J. Appl. Phys. 52(6), 4205–4220 (1981)

    Article  Google Scholar 

  25. Raman, A.P., Anoma, M.A., Zhu, L., Rephaeli, E., Fan, S.: Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014)

    Article  Google Scholar 

  26. Rephaeli, E., Raman, A., Fan, S.: Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013)

    Article  Google Scholar 

  27. Hossain, Md.M., Gu, M.: Radiative cooling: principles, progress, and potentials. Adv. Sci. 3(7), 1500360 (2016)

    Google Scholar 

  28. Kou, J.-L., Jurado, Z., Chen, Z., Fan, S., Minnich, A.J.: Daytime radiative cooling using near-black infrared emitters. ACS Photon. 4(3), 626–630 (2017)

    Article  Google Scholar 

  29. Zhao, B., Hu, M., Ao, X., Chen, N., Pei, G.: Radiative cooling: a review of fundamentals, materials, applications, and prospects. Appl. Energy 236, 489–513 (2019)

    Article  Google Scholar 

  30. Li, Z., Chen, Q., Song, Y., Zhu, B., Zhu, J.: Fundamentals, materials, and applications for daytime radiative cooling. Adv. Mater. Technol. 5(5), 1901007 (2020)

    Google Scholar 

  31. Li, W., Dong, M., Fan, L., John, J.J., Chen, Z., Fan, S.: Nighttime radiative cooling for water harvesting from solar panels. ACS Photon. 8(1), 269–275 (2020)

    Article  Google Scholar 

  32. Huang, Z., Ruan, X.: Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transfer 104, 890–896 (2017)

    Article  Google Scholar 

  33. Zhai, Y., et al.: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017)

    Article  Google Scholar 

  34. Jeon, S., et al.: Multifunctional daytime radiative cooling devices with simultaneous light-emitting and radiative cooling functional layers. ACS Appl. Mater. Interfaces 12(49), 54763–54772 (2020)

    Article  Google Scholar 

  35. Son, S., et al.: Colored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative cooling. Nano Energy 79, 105461 (2021)

    Google Scholar 

  36. Kecebas, M.A., Menguc, M.P., Kosar, A., Sendur, K.: Passive radiative cooling design with broadband optical thin-film filters. J. Quant. Spectrosc. Radiat. Transf. 198, 179–186 (2017)

    Article  Google Scholar 

  37. Garshasbi, S., Santamouris, M.: Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating. Sol. Energy Mater. Sol. Cells 191, 21–32 (2019)

    Article  Google Scholar 

  38. Taflove, A., Hagness, S.C., Piket-May, M.: Computational electromagnetics: the finite-difference time-domain method. Electr. Eng. Handb. 3, 629–670 (2005)

    Article  Google Scholar 

  39. Taflove, A., Brodwin, M.E.: Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 23(8), 623–630 (1975)

    Article  Google Scholar 

  40. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

  41. Vinattieri, A., Giorgi, G.: Halide perovskites for photonics: recent history and perspectives. In: Halide Perovskites for Photonics, vol. 1, pp. 1–28. AIP Publishing LLC, Melville (2021)

    Google Scholar 

  42. Tong, Z., Peoples, J., Li, X., Yang, X., Bao, H., Ruan, X.: Atomistic characteristics of ultra-efficient radiative cooling paint pigments: the case study of \({\rm BaSO}_{4}\). Mater. Today Phys. 24, 100658 (2022)

    Google Scholar 

  43. Tsai, M.-H., Yeh, J.-W.: High-entropy alloys: a critical review. Mater. Res. Lett. 2(3), 107–123 (2014)

    Article  Google Scholar 

  44. George, E.P., Raabe, D., Ritchie, R.O.: High-entropy alloys. Nat. Rev. Mater. 4(8), 515–534 (2019)

    Article  Google Scholar 

  45. Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., Yang, Y.: High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016)

    Article  Google Scholar 

  46. Rost, C.M., et al.: Entropy-stabilized oxides. Nat. Commun. 6(1), 1–8 (2015)

    Article  Google Scholar 

  47. Albedwawi, S.H., AlJaberi, A., Haidemenopoulos, G.N., Polychronopoulou, K.: High entropy oxides-exploring a paradigm of promising catalysts: a review. Mater. Des. 202, 109534 (2021)

    Google Scholar 

  48. Edalati, P., Wang, Q., Razavi-Khosroshahi, H., Fuji, M., Ishihara, T., Edalati, K.: Photocatalytic hydrogen evolution on a high-entropy oxide. J. Mater. Chem. A 8(4), 3814–3821 (2020)

    Article  Google Scholar 

  49. Zhao, C., Ding, F., Lu, Y., Chen, L., Hu, Y.-S.: High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020)

    Article  Google Scholar 

  50. Witte, R., et al.: High-entropy oxides: an emerging prospect for magnetic rare-earth transition metal perovskites. Phys. Rev. Mater. 3(3), 034406 (2019)

    Google Scholar 

  51. Sarkar, A., et al.: High entropy oxides for reversible energy storage. Nat. Commun. 9(1), 1–9 (2018)

    Article  Google Scholar 

  52. Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48(17), 13115–13118 (1993)

    Article  Google Scholar 

  53. Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251–1426 (1994)

    Article  Google Scholar 

  54. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  Google Scholar 

  55. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)

    Article  Google Scholar 

  56. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  Google Scholar 

  57. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  58. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  59. Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124(22), 221101 (2006)

    Google Scholar 

  60. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Google Scholar 

  61. Goldschmidt, V.M.: Die gesetze der krystallochemie. Naturwissenschaften 14(21), 477–485 (1926)

    Article  Google Scholar 

  62. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976)

    Google Scholar 

  63. Hachemi, A., Hachemi, H., Ferhat-Hamida, A., Louail, L.: Elasticity of \({\rm SrTiO}_{3}\) perovskite under high pressure in cubic, tetragonal and orthorhombic phases. Phys. Scr. 82(2), 025602 (2010)

    Google Scholar 

  64. Jain, A., et al.: Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1), 011002 (2013)

    Google Scholar 

  65. Moreira, E., et al.: Structural and optoelectronic properties, and infrared spectrum of cubic \({\rm BaSnO}_{3}\) from first principles calculations. J. Appl. Phys. 112(4), 043703 (2012)

    Google Scholar 

  66. Piskunov, S., Heifets, E., Eglitis, R.I., Borstel, G.: Bulk properties and electronic structure of \({\rm SrTiO}_{3}\), \({\rm BaTiO}_{3}\), \({\rm PbTiO}_{3}\) perovskites: an ab initio HF/DFT study. Comput. Mater. Sci. 29(2), 165–178 (2004)

    Article  Google Scholar 

  67. Bévillon, É., Chesnaud, A., Wang, Y., Dezanneau, G., Geneste, G.: Theoretical and experimental study of the structural, dynamical and dielectric properties of perovskite \({\rm BaSnO}_{3}\). J. Phys.: Condens. Matter 20(14), 145217 (2008)

    Google Scholar 

  68. Abramov, Y.A., Tsirelson, V.G., Zavodnik, V.E., Ivanov, S.A., Brown, I.D.: The chemical bond and atomic displacements in \({\rm SrTiO}_{3}\) from X-ray diffraction analysis. Acta Crystallogr. B 51(6), 942–951 (1995)

    Google Scholar 

  69. Farfán, J.C., Rodriguez, J.A., Fajardo, F., Lopez, E.V., Tellez, D.A.L., Roa-Rojas, J.: Structural properties, electric response and electronic feature of \({\rm BaSnO}_{3}\) perovskite. Physica B 404(18), 2720–2722 (2009)

    Article  Google Scholar 

  70. Mountstevens, E.H., Attfield, J.P., Redfern, S.A.T.: Cation-size control of structural phase transitions in tin perovskites. J. Phys.: Condens. Matter 15(49), 8315 (2003)

    Google Scholar 

  71. Van Benthem, K., Elsässer, C., French, R.H.: Bulk electronic structure of \({\rm SrTiO}_{3}\): experiment and theory. J. Appl. Phys. 90(12), 6156–6164 (2001)

    Google Scholar 

  72. Shan, C., et al.: Optical and electrical properties of sol-gel derived Ba\(_{1-x}\)La\(_x\)SnO\(_3\) transparent conducting films for potential optoelectronic applications. J. Phys. Chem. C 118(13), 6994–7001 (2014)

    Article  Google Scholar 

  73. Lebens-Higgins, Z., et al.: Direct observation of electrostatically driven band gap renormalization in a degenerate perovskite transparent conducting oxide. Phys. Rev. Lett. 116(2), 027602 (2016)

    Google Scholar 

  74. Smith, I.C., Hoke, E.T., Solis-Ibarra, D., McGehee, M.D., Karunadasa, H.I.: A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53(42), 11232–11235 (2014)

    Article  Google Scholar 

  75. Tsai, H., et al.: High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536(7616), 312–316 (2016)

    Article  Google Scholar 

  76. Palummo, M., Postorino, S., Borghesi, C., Giorgi, G.: Strong out-of-plane excitons in 2D hybrid halide double perovskites. Appl. Phys. Lett. 119(5), 051103 (2021)

    Google Scholar 

  77. Giorgi, G., Yamashita, K., Palummo, M.: Nature of the electronic and optical excitations of Ruddlesden-Popper hybrid organic-inorganic perovskites: the role of the many-body interactions. J. Phys. Chem. Lett. 9(19), 5891–5896 (2018)

    Article  Google Scholar 

  78. Folpini, G., et al.: Band splitting and plurality of excitons in Ruddlesden-Popper metal halides. ChemRxiv 10.26434/chemrxiv-2021-qcm36-v2 (2021)

    Google Scholar 

  79. Ruddlesden, S.N., Popper, P.: The compound \({\rm Sr}_{3}{\rm Ti}_{2}{\rm O}_{7}\) and its structure. Acta Crystallogr. 11(1), 54–55 (1958)

    Article  Google Scholar 

  80. Reshak, A.H., Auluck, S., Kityk, I.: Electronic band structure and optical properties of Sr\(_{n+1}\)Ti\(_n\)O\(_{3n+1}\) Ruddlesden-Popper homologous series. Jpn. J. Appl. Phys. 47(7R), 5516 (2008)

    Article  Google Scholar 

  81. Lee, C.-H., et al.: Effect of reduced dimensionality on the optical band gap of \({\rm SrTiO}_{3}\). Appl. Phys. Lett. 102(12), 122901 (2013)

    Google Scholar 

  82. Li, Y., Zhang, L., Ma, Y., Singh, D.J.: Tuning optical properties of transparent conducting barium stannate by dimensional reduction. APL Mater. 3(1), 011102 (2015)

    Google Scholar 

  83. Sanchez, F., Ocal, C., Fontcuberta, J.: Tailored surfaces of perovskite oxide substrates for conducted growth of thin films. Chem. Soc. Rev. 43(7), 2272–2285 (2014)

    Article  Google Scholar 

  84. Fan, D., et al.: Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Appl. Catal. B 295, 120285 (2021)

    Google Scholar 

Download references

Acknowledgments

The authors thank the ERC Stg Project HELIOS (GA 101041255, PI dr. A.L. Pisello) funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. G.G. and C.B. acknowledge ISCRA B, and C initiatives for awarding access to computing resources on m100 at CINECA SuperComputer Center, Italy. G.G. thanks the Dipartimento di Ingegneria Civile e Ambientale of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018–2022”. Authors are similarly grateful to Prof. L. Latterini (Dept of Chemistry, Biology and Biotechnology, Perugia University) for the very fruitful scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Giorgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borghesi, C., Fabiani, C., Pisello, A.L., Giorgi, G. (2022). Quantum Confinement Effects in Materials for Daytime Radiative Cooling: An Ab-initio Investigation. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13382. Springer, Cham. https://doi.org/10.1007/978-3-031-10592-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10592-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10591-3

  • Online ISBN: 978-3-031-10592-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics