Skip to main content

UAV Photogrammetry for Volume Calculations. A Case Study of an Open Sand Quarry

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13382))

Included in the following conference series:

Abstract

Traditional geomatic surveying techniques for calculating volumes of bulk or extracted material have evolved in recent years. From the traditional GNSS or total station survey to the current UAV photogrammetric system with the Structure from Motion (SfM) approach. The calculation of the volumes of bulk or landfill materials is of considerable importance both from an economic point of view and from an environmental point of view. The emergence of unmanned aerial vehicles - UAVs made it possible to automate the entire volume detection process, as well as reduce the time required for detection itself. This paper presents the calculation of the volume for the heaps of material (sand) on an open sand quarry with the use of UAV and multimages Close Range Photogrammetry. The survey was carried out on the same sand quarry in two successive time with the DJI Phantom 4 UAV. The images processed with the Metashape software, and the volume calculation performed with the Cloud Compare software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raeva, P., Filipova, S., Filipov, D.: Volume computation of a stockpile – a study case comparing GPS and UAV measurements in an open pit quarry. ISPRS - Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLI-B1, 999–1004 (2016). https://doi.org/10.5194/isprsarchives-XLI-B1-999

  2. Mazhrakov, M.: Mine Engineering. Sofia Univerisity, Sofia (2007)

    Google Scholar 

  3. Tucci, G., Gebbia, A., Conti, A., Fiorini, L., Lubello, C.: Monitoring and computation of the volumes of stockpiles of bulk material by means of UAV photogrammetric surveying. Remote Sens. 11, 1471 (2019). https://doi.org/10.3390/rs11121471

    Article  Google Scholar 

  4. Bai, P., Vignoli, G., Viezzoli, A., Nevalainen, J., Vacca, G.: (Quasi-)real-time inversion of airborne time-domain electromagnetic data via artificial neural network. Remote Sens. 12, 3440 (2020). https://doi.org/10.3390/rs12203440

    Article  Google Scholar 

  5. Yakar, M., Yilmaz, H.M., Mutluoglu, O.: Performance of photogrammetric and terrestrial laser scanning methods in volume computing of excavation and filling areas. Arab. J. Sci. Eng. 39(1), 387–394 (2013). https://doi.org/10.1007/s13369-013-0853-1

    Article  Google Scholar 

  6. Vacca, G., Dessì, A., Sacco, A.: The use of nadir and oblique UAV images for building knowledge. ISPRS Int. J. Geo-Inf. 6, 393 (2017). https://doi.org/10.3390/ijgi6120393

    Article  Google Scholar 

  7. Giannattasio, C., Grillo, S.M., Vacca, G.: Interdisciplinary study for knowledge and dating of the San Francesco convent in Stampace, Cagliari – Italy (XIII-XXI Century). ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. II-5/W1, 139–144 (2013). https://doi.org/10.5194/isprsannals-II-5-W1-139-2013

  8. Arango, C., Morales, C.A.: Comparison between multicopter UAV and Total Station for estimating stockpile volumes. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-1/W4, 131–135 (2015)

    Google Scholar 

  9. Abbaszadeh, S., Rastiveisa, H.: A comparison of close-range photogrammetry using a non-professional camera with field surveying for volume estimation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-4/W4, 1–4 (2017)

    Google Scholar 

  10. Wang, X., Al-Shabbani, Z., Sturgill, R., Kirk, A., Dadi, G.B.: Estimating earthwork volumes through use of unmanned aerial systems. Transp. Res. Rec. 2630, 1–8 (2017)

    Article  Google Scholar 

  11. http://it.smartnet-eu.com/. Accessed 01 Apr 2022

  12. http://www.agisoft.com/. Accessed 01 Apr 2022

  13. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-84882-935-0

    Book  MATH  Google Scholar 

  14. Rossi, P., Mancini, F., Dubbini, M., Mazzone, F., Capra, A.: Combining nadir and oblique UAV imagery to reconstruct quarry topography: methodology and feasibility analysis. Eur. J. Remote Sens. 50(1), 211–221 (2017). https://doi.org/10.1080/22797254.2017.1313097

    Article  Google Scholar 

  15. Vacca, G., Furfaro, G., Dessì, A.: The use of the UAV images for the building 3D model generation. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-4/W8, 217–223 (2018). https://doi.org/10.5194/isprs-archives-XLII-4-W8-217-2018

  16. Kokamagi, K., Turk, K., Liba, N.: UAV photogrammetry for volume calculations. Agron. Res. 18(3) 2087–2102 (2020). https://doi.org/10.15159/ar.20.213

Download references

Acknowledgments

This paper was supported by Fondazione di Sardegna through grant Surveying, modelling, monitoring and rehabilitation of masonry vaults and domes i.e. Rilievo, modellazione, monitoraggio e risanamento di volte e cupole in muratura (RMMR) (CUP code: F72F20000320007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuessppina Vacca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vacca, G. (2022). UAV Photogrammetry for Volume Calculations. A Case Study of an Open Sand Quarry. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13382. Springer, Cham. https://doi.org/10.1007/978-3-031-10592-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10592-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10591-3

  • Online ISBN: 978-3-031-10592-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics