Skip to main content

Finite-Horizon and Infinite-Horizon Markov Decision Processes with Trapezoidal Fuzzy Discounted Rewards

  • Conference paper
  • First Online:
Operations Research and Enterprise Systems (ICORES 2020, ICORES 2021)

Abstract

Discrete-time discounted Markov decision processes (MDPs, in singular MDP) with finite state spaces, compact action sets and trapezoidal fuzzy reward functions are presented in this article. For such a kind of MDPs, both the finite and the infinite horizons cases are studied. The corresponding optimal control problems are established with respect to the partial order on the \(\alpha \)-cuts of fuzzy numbers, named the fuzzy max order. The fuzzy optimal solution is related to a suitable discounted MDP with a nonfuzzy reward. And in the article, different applications of the theory developed are provided: a finite-horizon model of an inventory system in which an algorithm to calculate the optimal solution is given, and, additionally for the infinite-horizon case, an MDP and a competitive MDP (also known as a stochastic game) are supplied in an economic and financial context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasbandy, S., Hajjari, T.: A new approach for ranking of trapezoidal fuzzy numbers. Comput. Math. Appl. 57(3), 413–419 (2009)

    Article  MathSciNet  Google Scholar 

  2. Aliprantis, C.D., Border, K.: Infinite Dimensional Analysis. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29587-9.pdf

    Book  MATH  Google Scholar 

  3. Asmussen, S.: Applied Probability and Queues. Wiley, New York (1987). https://doi.org/10.1007/b97236

    Book  MATH  Google Scholar 

  4. Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.: Discounted Markov decision processes with fuzzy rewards induced by non-fuzzy systems. In: Parlier G.H., Liberatore F., Demange, M. (eds.) ICORES 2021, Proceedings of the 10th International Conference on Operations Research and Enterprise Systems, pp. 49–59. SCITEPRESS (2021)

    Google Scholar 

  5. De Silva, C.W.: Intelligent Control: Fuzzy Logic Applications. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  6. Dombi, J., Jónás, T.: Ranking trapezoidal fuzzy numbers using a parametric relation pair. Fuzzy Sets Syst. 399, 20–43 (2020)

    Article  MathSciNet  Google Scholar 

  7. Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer Science & Business Media, Heidelberg (2013). https://doi.org/10.1007/978-3-662-11131-4

    Book  MATH  Google Scholar 

  8. Efendi, R., Arbaiy, N., Deris, M.M.: A new procedure in stock market forecasting based on fuzzy random auto-regression time series model. Inf. Sci. 441, 113–132 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fakoor, M., Kosari, A., Jafarzadeh, M.: Humanoid robot path planning with fuzzy Markov decision processes. J. Appl. Res. Technol. 14(5), 300–310 (2016)

    Article  Google Scholar 

  10. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer Science & Business Media, Heidelberg (2012). https://doi.org/10.1007/978-1-4612-4054-9

    Book  MATH  Google Scholar 

  11. Furukawa, N.: Parametric orders on fuzzy numbers and their roles in fuzzy optimization problems. Optimization 40(2), 171–192 (1997)

    Article  MathSciNet  Google Scholar 

  12. Gil, M.A., Colubi, A., Terán, P.: Random fuzzy sets: why, when, how. Boletín de Estadística e Investigación Opeativa 30(1), 5–29 (2014)

    Google Scholar 

  13. Guo, Y., Jiao, L., Wang, S., Wang, S., Liu, F., Hua, W.: Fuzzy superpixels for polarimetric SAR images classification. IEEE Trans. Fuzzy Syst. 26(5), 2846–2860 (2018)

    Article  Google Scholar 

  14. Hernández-Lerma, O.: Adaptive Markov Control Processes. Springer Science & Business Media, Heidelberg (1989). https://doi.org/10.1007/978-1-4419-8714-3

    Book  MATH  Google Scholar 

  15. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  16. Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: Markov decision processes with fuzzy rewards. J. Nonlinear Convex Anal. 4(1), 105–116 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Ljungqvist, L., Sargent, T.J.: Recursive Macroeconomic Theory. MIT Press, Massachusetts (2012)

    Google Scholar 

  18. Phuong, N.H., Kreinovich, V.: Fuzzy logic and its applications in medicine. Int. J. Med. Inf. 62(2–3), 165–173 (2001)

    Article  Google Scholar 

  19. Porteus, E.L.: Foundations of Stochastic Inventory Theory. Stanford Business Books, Stanford (2002)

    Book  Google Scholar 

  20. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114(2), 409–422 (1993)

    Article  MathSciNet  Google Scholar 

  21. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New Jersey (1994)

    Book  Google Scholar 

  22. Ramík, J., Rimánek, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16(2), 123–138 (1985)

    Article  MathSciNet  Google Scholar 

  23. Semmouri, A., Jourhmane, M., Belhallaj, Z.: Discounted Markov decision processes with fuzzy costs. Ann. Oper. Res. 295(2), 769–786 (2020). https://doi.org/10.1007/s10479-020-03783-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. 39(10), 1095–1100 (1953)

    Article  MathSciNet  Google Scholar 

  25. Syropoulos, A., Grammenos, T.: A Modern Introduction to Fuzzy Mathematics. Wiley, New York (2020)

    Book  Google Scholar 

  26. Topkis, D.M.: Supermodularity and Complementarity. Princeton University Press, New Jersey (1998)

    Google Scholar 

  27. Webb, J.N.: Game Theory: Decisions, Interaction and Evolution. Springer-Verlag, London (2007). https://doi.org/10.1007/978-1-84628-636-0

    Book  MATH  Google Scholar 

  28. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karla Carrero-Vera , Hugo Cruz-Suárez or Raúl Montes-de-Oca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R. (2022). Finite-Horizon and Infinite-Horizon Markov Decision Processes with Trapezoidal Fuzzy Discounted Rewards. In: Parlier, G.H., Liberatore, F., Demange, M. (eds) Operations Research and Enterprise Systems. ICORES ICORES 2020 2021. Communications in Computer and Information Science, vol 1623. Springer, Cham. https://doi.org/10.1007/978-3-031-10725-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10725-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10724-5

  • Online ISBN: 978-3-031-10725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics