Abstract
Discrete-time discounted Markov decision processes (MDPs, in singular MDP) with finite state spaces, compact action sets and trapezoidal fuzzy reward functions are presented in this article. For such a kind of MDPs, both the finite and the infinite horizons cases are studied. The corresponding optimal control problems are established with respect to the partial order on the \(\alpha \)-cuts of fuzzy numbers, named the fuzzy max order. The fuzzy optimal solution is related to a suitable discounted MDP with a nonfuzzy reward. And in the article, different applications of the theory developed are provided: a finite-horizon model of an inventory system in which an algorithm to calculate the optimal solution is given, and, additionally for the infinite-horizon case, an MDP and a competitive MDP (also known as a stochastic game) are supplied in an economic and financial context.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbasbandy, S., Hajjari, T.: A new approach for ranking of trapezoidal fuzzy numbers. Comput. Math. Appl. 57(3), 413–419 (2009)
Aliprantis, C.D., Border, K.: Infinite Dimensional Analysis. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29587-9.pdf
Asmussen, S.: Applied Probability and Queues. Wiley, New York (1987). https://doi.org/10.1007/b97236
Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.: Discounted Markov decision processes with fuzzy rewards induced by non-fuzzy systems. In: Parlier G.H., Liberatore F., Demange, M. (eds.) ICORES 2021, Proceedings of the 10th International Conference on Operations Research and Enterprise Systems, pp. 49–59. SCITEPRESS (2021)
De Silva, C.W.: Intelligent Control: Fuzzy Logic Applications. CRC Press, Boca Raton (2018)
Dombi, J., Jónás, T.: Ranking trapezoidal fuzzy numbers using a parametric relation pair. Fuzzy Sets Syst. 399, 20–43 (2020)
Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer Science & Business Media, Heidelberg (2013). https://doi.org/10.1007/978-3-662-11131-4
Efendi, R., Arbaiy, N., Deris, M.M.: A new procedure in stock market forecasting based on fuzzy random auto-regression time series model. Inf. Sci. 441, 113–132 (2018)
Fakoor, M., Kosari, A., Jafarzadeh, M.: Humanoid robot path planning with fuzzy Markov decision processes. J. Appl. Res. Technol. 14(5), 300–310 (2016)
Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer Science & Business Media, Heidelberg (2012). https://doi.org/10.1007/978-1-4612-4054-9
Furukawa, N.: Parametric orders on fuzzy numbers and their roles in fuzzy optimization problems. Optimization 40(2), 171–192 (1997)
Gil, M.A., Colubi, A., Terán, P.: Random fuzzy sets: why, when, how. Boletín de Estadística e Investigación Opeativa 30(1), 5–29 (2014)
Guo, Y., Jiao, L., Wang, S., Wang, S., Liu, F., Hua, W.: Fuzzy superpixels for polarimetric SAR images classification. IEEE Trans. Fuzzy Syst. 26(5), 2846–2860 (2018)
Hernández-Lerma, O.: Adaptive Markov Control Processes. Springer Science & Business Media, Heidelberg (1989). https://doi.org/10.1007/978-1-4419-8714-3
Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River (1995)
Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: Markov decision processes with fuzzy rewards. J. Nonlinear Convex Anal. 4(1), 105–116 (2003)
Ljungqvist, L., Sargent, T.J.: Recursive Macroeconomic Theory. MIT Press, Massachusetts (2012)
Phuong, N.H., Kreinovich, V.: Fuzzy logic and its applications in medicine. Int. J. Med. Inf. 62(2–3), 165–173 (2001)
Porteus, E.L.: Foundations of Stochastic Inventory Theory. Stanford Business Books, Stanford (2002)
Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114(2), 409–422 (1993)
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New Jersey (1994)
Ramík, J., Rimánek, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16(2), 123–138 (1985)
Semmouri, A., Jourhmane, M., Belhallaj, Z.: Discounted Markov decision processes with fuzzy costs. Ann. Oper. Res. 295(2), 769–786 (2020). https://doi.org/10.1007/s10479-020-03783-6
Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. 39(10), 1095–1100 (1953)
Syropoulos, A., Grammenos, T.: A Modern Introduction to Fuzzy Mathematics. Wiley, New York (2020)
Topkis, D.M.: Supermodularity and Complementarity. Princeton University Press, New Jersey (1998)
Webb, J.N.: Game Theory: Decisions, Interaction and Evolution. Springer-Verlag, London (2007). https://doi.org/10.1007/978-1-84628-636-0
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R. (2022). Finite-Horizon and Infinite-Horizon Markov Decision Processes with Trapezoidal Fuzzy Discounted Rewards. In: Parlier, G.H., Liberatore, F., Demange, M. (eds) Operations Research and Enterprise Systems. ICORES ICORES 2020 2021. Communications in Computer and Information Science, vol 1623. Springer, Cham. https://doi.org/10.1007/978-3-031-10725-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-10725-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10724-5
Online ISBN: 978-3-031-10725-2
eBook Packages: Computer ScienceComputer Science (R0)