Skip to main content

A Brief Review on Multi-Attribute Decision Making in the Emerging Fields of Computer Science

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2022)

Abstract

The decision-making mechanism plays a critical role in assisting experts to estimate and choose the best potential alternatives in this technical age. Multi-Attribute Decision Making (MADM) approaches are commonly utilized in many environments where there are several criteria that need to be evaluated and it is highly challenging to find the best solution. Many MADM innovations have been implemented over the past couple of decades in many fields of computer science that have enabled decision-makers to reach eminent choices. This paper explored the usage of MADM, which is a sub-domain of Multi-Criteria Decision Making, and its applications in 3 emerging and trending computer science fields viz., Cloud Computing, Internet of Things (IoT) and Big Data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manage. Sci. 17(4), B-141 (1970)

    Google Scholar 

  2. Power, D.J.: Decision support systems: concepts and resources for managers. Greenwood Publishing Group (2002)

    Google Scholar 

  3. Skinner, D.C.: Introduction to decision analysis: a practitioner's guide to improving decision quality. Probabilistic Pub (2009)

    Google Scholar 

  4. ur Rehman, Z., Hussain, O.K., Hussain, F.K.: IAAS cloud selection using MCDM methods. In: 2012 IEEE Ninth International Conference on E-Business Engineering, pp. 246–251. IEEE (2012)

    Google Scholar 

  5. Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Service Sci. 1(1), 83–98 (2008)

    Google Scholar 

  6. Triantaphyllou, E.: Multi-criteria decision making methods. Multi-Criteria Decision Making Methods: A Comparative Study, pp. 5–21. Springer, Boston, MA (2000). https://doi.org/10.1007/978-1-4757-3157-6_2

  7. Zanakis, S.H., Solomon, A., Wishart, N., Dublish, S.: Multi-attribute decision making: a simulation comparison of select methods. Eur. J. Oper. Res. 107(3), 507–529 (1998)

    Article  MATH  Google Scholar 

  8. Gaur, D., Aggarwal, S.: Selection of software development model using TOPSIS methodology. In: Jain, L., Balas, E., Johri, P. (eds.) Data and Communication Networks. Advances in Intelligent Systems and Computing, vol. 847. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2254-9_11

  9. Belton, V., Stewart, T.J.: Outranking methods. Multiple Criteria Decision Analysis, pp. 233–259. Springer, Boston, MA (2002)

    Google Scholar 

  10. Benayoun, R., Roy, B., Sussman, B.: ELECTRE: Une méthode pour guider le choix en présence de points de vue multiples. Note de travail 49, 2–120 (1966)

    Google Scholar 

  11. Govindan, K., Jepsen, M.B.: ELECTRE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 250(1), 1–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brans, J.P., De Smet, Y.: PROMETHEE methods. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple Criteria Decision Analysis. International Series in Operations Research & Management Science, vol. 233. Springer, New York, NY (2016). https://doi.org/10.1007/978-1-4939-3094-4_6

  13. Rezaei, J.: Best-worst multi-criteria decision-making method. Omega 53, 49–57 (2015)

    Article  Google Scholar 

  14. Saaty, R.W.: The analytic hierarchy process—what it is and how it is used. Math. Model. 9(3–5), 161–176 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J.: A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 39(17), 13051–13069 (2012)

    Article  Google Scholar 

  16. Saaty, T.L.: Fundamentals of the Analytic Network Process, ISAHP. Kobe, Japan (1999)

    Google Scholar 

  17. Opricovic, S.: Multicriteria optimization of civil engineering systems. Faculty Civil Eng. Belgrade 2(1), 5–21 (1998)

    MathSciNet  Google Scholar 

  18. Fontela, E., Gabus, A.: DEMATEL, innovative methods (1974)

    Google Scholar 

  19. Zionts, S., Wallenius, J.: An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Manage. Sci. 29(5), 519–529 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Futur. Gener. Comput. Syst. 25(6), 599–616 (2009)

    Article  Google Scholar 

  21. Wang, X.F., Wang, J.Q., Deng, S.Y.: A method to dynamic stochastic multicriteria decision making with log-normally distributed random variables. Sci. World J. 2013 (2013)

    Google Scholar 

  22. Lee, S., Seo, K.K.: A hybrid multi-criteria decision-making model for a cloud service selection problem using BSC, fuzzy Delphi method and fuzzy AHP. Wireless Pers. Commun. 86(1), 57–75 (2016)

    Article  Google Scholar 

  23. Bhushan, S.B., Pradeep, R.C.: A network QoS aware service ranking using hybrid AHP-PROMETHEE method in multi-cloud domain. Int. J. Eng. Res. Africa, 24, 153–164 (2016)

    Google Scholar 

  24. Kumar, R.R., Kumar, C.: An evaluation system for cloud service selection using fuzzy AHP. In: 2016 11th International Conference on Industrial and Information Systems (ICIIS), pp. 821–826. IEEE (2016)

    Google Scholar 

  25. Sun, L., Ma, J., Zhang, Y., Dong, H., Hussain, F.K.: Cloud-FuSeR: fuzzy ontology and MCDM based cloud service selection. Futur. Gener. Comput. Syst. 57, 42–55 (2016)

    Article  Google Scholar 

  26. Wibowo, S., Deng, H., Xu, W.: Evaluation of cloud services: a fuzzy multi-criteria group decision making method. Algorithms 9(4), 84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chahal, R.K., Singh, S.: Fuzzy logic and AHP-based ranking of cloud service providers. In: Computational Intelligence in Data Mining, vol. 1, pp. 337-346. Springer, New Delhi (2016)

    Google Scholar 

  28. Ben Alla, H., Ben Alla, S., Ezzati, A.: A priority based task scheduling in cloud computing using a hybrid MCDM model. In: Sabir, E., García Armada, A., Ghogho, M., Debbah, M. (eds.) Ubiquitous Networking. UNet 2017. Lecture Notes in Computer Science, vol. 10542. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68179-5_21

  29. Sohaib, O., Naderpour, M.: Decision making on adoption of cloud computing in e-commerce using fuzzy TOPSIS. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2017)

    Google Scholar 

  30. Kaveri, B.A., Gireesha, O., Somu, N., Raman, M.G., Sriram, V.S.: E-FPROMETHEE: an entropy based fuzzy multi criteria decision making service ranking approach for cloud service selection. In: International Conference on Intelligent Information Technologies, pp. 224–238. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-7635-0_17

  31. Sidhu, J., Singh, S.: Improved topsis method based trust evaluation framework for determining trustworthiness of cloud service providers. J. Grid Comput. 15(1), 81–105 (2017)

    Article  Google Scholar 

  32. Tanoumand, N., Ozdemir, D.Y., Kilic, K., Ahmed, F.: Selecting cloud computing service provider with fuzzy AHP. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–5. IEEE (2017)

    Google Scholar 

  33. Azar, H., Majma, M.R.: Using a multi criteria decision making model for managing computational resources at mobile ad-hoc cloud computing environment. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–5. IEEE (2017)

    Google Scholar 

  34. Kumar, R.R., Mishra, S., Kumar, C.: A novel framework for cloud service evaluation and selection using hybrid MCDM methods. Arab. J. Sci. Eng. 43(12), 7015–7030 (2018)

    Article  Google Scholar 

  35. Büyüközkan, G., Göçer, F., Feyzioğlu, O.: Cloud computing technology selection based on interval-valued intuitionistic fuzzy MCDM methods. Soft. Comput. 22(15), 5091–5114 (2018). https://doi.org/10.1007/s00500-018-3317-4

    Article  Google Scholar 

  36. Nawaz, F., Asadabadi, M.R., Janjua, N.K., Hussain, O.K., Chang, E., Saberi, M.: An MCDM method for cloud service selection using a Markov chain and the best-worst method. Knowl.-Based Syst. 159, 120–131 (2018)

    Article  Google Scholar 

  37. Abdel-Basset, M., Mohamed, M., Chang, V.: NMCDA: a framework for evaluating cloud computing services. Futur. Gener. Comput. Syst. 86, 12–29 (2018)

    Article  Google Scholar 

  38. Al-Faifi, A., Song, B., Hassan, M.M., Alamri, A., Gumaei, A.: A hybrid multi criteria decision method for cloud service selection from Smart data. Futur. Gener. Comput. Syst. 93, 43–57 (2019)

    Article  Google Scholar 

  39. Jatoth, C., Gangadharan, G.R., Fiore, U., Buyya, R.: SELCLOUD: a hybrid multi-criteria decision-making model for selection of cloud services. Soft. Comput. 23(13), 4701–4715 (2018). https://doi.org/10.1007/s00500-018-3120-2

    Article  Google Scholar 

  40. Kumar, R.R., Kumari, B., Kumar, C.: CCS-OSSR: a framework based on Hybrid MCDM for optimal service selection and ranking of cloud computing services. Clust. Comput. 24(2), 867–883 (2020). https://doi.org/10.1007/s10586-020-03166-3

    Article  Google Scholar 

  41. Khorsand, R., Ramezanpour, M.: An energy-efficient task-scheduling algorithm based on a multi-criteria decision-making method in cloud computing. Int. J. Commun. Syst. 33(9), e4379 (2020)

    Article  Google Scholar 

  42. Youssef, A.E.: An integrated MCDM approach for cloud service selection based on TOPSIS and BWM. IEEE Access 8, 71851–71865 (2020)

    Article  Google Scholar 

  43. Nejat, M.H., Motameni, H., Vahdat-Nejad, H., Barzegar, B.: Efficient cloud service ranking based on uncertain user requirements. Clust. Comput. 25(1), 485–502 (2021). https://doi.org/10.1007/s10586-021-03418-w

    Article  Google Scholar 

  44. Taghavifard, M.T., Majidian, S.: Identifying cloud computing risks based on firm’s ambidexterity performance using fuzzy VIKOR technique. Glob. J. Flex. Syst. Manag. 23(1), 113–133 (2021). https://doi.org/10.1007/s40171-021-00292-8

    Article  Google Scholar 

  45. Baranwal, G., Singh, M., Vidyarthi, D.P.: A framework for IoT service selection. J. Supercomput. 76(4), 2777–2814 (2019). https://doi.org/10.1007/s11227-019-03076-1

    Article  Google Scholar 

  46. Kim, S., Kim, S.: A multi-criteria approach toward discovering killer IoT application in Korea. Technol. Forecast. Soc. Chang. 102, 143–155 (2016)

    Article  Google Scholar 

  47. Botti, L., Bragatto, P., Duraccio, V., Gnoni, M.G., Mora, C.: Adopting IOT technologies to control risks in confined space: a multi-criteria decision tool. Chem. Eng. Trans. 53, 127–132 (2016)

    Google Scholar 

  48. Ashraf, Q.M., Habaebi, M.H., Islam, M.R.: TOPSIS-based service arbitration for autonomic internet of things. IEEE Access 4, 1313–1320 (2016)

    Article  Google Scholar 

  49. Alansari, Z., Anuar, N.B., Kamsin, A., Soomro, S., Belgaum, M.R.: The Internet of Things adoption in healthcare applications. In: 2017 IEEE 3rd International Conference on Engineering Technologies and Social Sciences (ICETSS), pp. 1–5. IEEE (2017)

    Google Scholar 

  50. Li, Y., Sun, Z., Han, L., Mei, N.: Fuzzy comprehensive evaluation method for energy management systems based on an internet of things. IEEE Access 5, 21312–21322 (2017)

    Article  Google Scholar 

  51. Silva, E.M., Agostinho, C., Jardim-Goncalves, R.: A multi-criteria decision model for the selection of a more suitable Internet-of-Things device. In: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1268–1276. IEEE (2017)

    Google Scholar 

  52. Abedin, S.F., Alam, M.G.R., Kazmi, S.A., Tran, N.H., Niyato, D., Hong, C.S.: Resource allocation for ultra-reliable and enhanced mobile broadband IoT applications in fog network. IEEE Trans. Commun. 67(1), 489–502 (2018)

    Article  Google Scholar 

  53. Ly, P.T.M., Lai, W.H., Hsu, C.W., Shih, F.Y.: Fuzzy AHP analysis of Internet of Things (IoT) in enterprises. Technol. Forecast. Soc. Chang. 136, 1–13 (2018)

    Article  Google Scholar 

  54. Durão, L.F.C., Carvalho, M.M., Takey, S., Cauchick-Miguel, P.A., Zancul, E.: Internet of Things process selection: AHP selection method. Int. J. Adv. Manuf. Technol. 99(9), 2623-2634 (2018).https://doi.org/10.1007/s00170-018-2617-2

  55. Alelaiwi, A.: Evaluating distributed IoT databases for edge/cloud platforms using the analytic hierarchy process. J. Parallel Distrib. Comput. 124, 41–46 (2019)

    Article  Google Scholar 

  56. Kao, Y.S., Nawata, K., Huang, C.Y.: Evaluating the performance of systemic innovation problems of the IoT in manufacturing industries by novel MCDM methods. Sustainability 11(18), 4970 (2019)

    Article  Google Scholar 

  57. Uslu, B., Eren, T., Gür, Ş, Özcan, E.: Evaluation of the difficulties in the internet of things (IoT) with multi-criteria decision-making. Processes 7(3), 164 (2019)

    Article  Google Scholar 

  58. Mashal, I., Alsaryrah, O.: Fuzzy analytic hierarchy process model for multi-criteria analysis of internet of things. Kybernetes (2019)

    Google Scholar 

  59. Bashir, H., Lee, S., Kim, K.H.: Resource allocation through logistic regression and multicriteria decision making method in IoT fog computing. Trans. Emerg. Telecommun. Technol. 33(2), e3824 (2019)

    Google Scholar 

  60. Mashal, I., Alsaryrah, O., Chung, T.Y., Yuan, F.C.: A multi-criteria analysis for an internet of things application recommendation system. Technol. Soc. 60, 101216 (2020)

    Article  Google Scholar 

  61. Lin, M., Huang, C., Xu, Z., Chen, R.: Evaluating IoT platforms using integrated probabilistic linguistic MCDM method. IEEE Internet Things J. 7(11), 11195–11208 (2020)

    Article  Google Scholar 

  62. Contreras-Masse, R., Ochoa-Zezzatti, A., Garcia, V., Perez-Dominguez, L., Elizondo-Cortes, M.: Implementing a novel use of multicriteria decision analysis to select IIoT platforms for smart manufacturing. Symmetry 12(3), 368 (2020)

    Article  Google Scholar 

  63. Štefanič, P., Stankovski, V.: Multi-criteria decision-making approach for container-based cloud applications: the SWITCH and ENTICE workbenches. Tehnički vjesnik 27(3), 1006–1013 (2020)

    Google Scholar 

  64. Haghparast, M.B., Berehlia, S., Akbari, M., Sayadi, A.: Developing and evaluating a proposed health security framework in IoT using fuzzy analytic network process method. J. Ambient. Intell. Humaniz. Comput. 12(2), 3121–3138 (2020). https://doi.org/10.1007/s12652-020-02472-3

    Article  Google Scholar 

  65. Zhou, T., Ming, X., Chen, Z., Miao, R.: Selecting industrial IoT Platform for digital servitisation: a framework integrating platform leverage practices and cloud HBWM-TOPSIS approach. Int. J. Prod. Res. 1–23 (2021)

    Google Scholar 

  66. Turet, J.G., Costa, A.P.C.S.: Big data analytics to improve the decision-making process in public safety: a case study in Northeast Brazil. In: International Conference on Decision Support System Technology, pp. 76–87. Springer, Cham (2018)

    Google Scholar 

  67. Bag, S.: Fuzzy VIKOR approach for selection of big data analyst in procurement management. J. Transp. Supply Chain Manage. 10(1), 1–6 (2016)

    Article  MathSciNet  Google Scholar 

  68. Sachdeva, N., Singh, O., Kapur, P.K., Galar, D.: Multi-criteria intuitionistic fuzzy group decision analysis with TOPSIS method for selecting appropriate cloud solution to manage big data projects. Int. J. Syst. Assurance Eng. Manage. 7(3), 316–324 (2016). https://doi.org/10.1007/s13198-016-0455-x

    Article  Google Scholar 

  69. Sachdeva, N., Kapur, P.K., Singh, G.: Selecting appropriate cloud solution for managing big data projects using hybrid AHP-entropy based assessment. In: 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), pp. 135–140. IEEE (2016)

    Google Scholar 

  70. Boutkhoum, O., Hanine, M., Agouti, T., Tikniouine, A.: A decision-making approach based on fuzzy AHP-TOPSIS methodology for selecting the appropriate cloud solution to manage big data projects. Int. J. Syst. Assurance Eng. Manage. 8(2), 1237-1253 (2017).https://doi.org/10.1007/s13198-017-0592-x

  71. Hsueh, S.L., Cheng, A.C.: Improving air quality in communities by using a multicriteria decision-making model based on big data: a critical review. Appl. Ecol. Environ. Res. 15(2), 15–31 (2017)

    Article  Google Scholar 

  72. Salman, O.H., Zaidan, A.A., Zaidan, B.B., Naserkalid, F., Hashim, M.: Novel methodology for triage and prioritizing using “big data” patients with chronic heart diseases through telemedicine environmental. Int. J. Inf. Technol. Decis. Making, 16(05), 1211–1245 (2017)

    Google Scholar 

  73. Ifaei, P., Farid, A., Yoo, C.: An optimal renewable energy management strategy with and without hydropower using a factor weighted multi-criteria decision making analysis and nation-wide big data-Case study in Iran. Energy 158, 357–372 (2018)

    Article  Google Scholar 

  74. Yadegaridehkordi, E., Hourmand, M., Nilashi, M., Shuib, L., Ahani, A., Ibrahim, O.: Influence of big data adoption on manufacturing companies’ performance: an integrated DEMATEL-ANFIS approach. Technol. Forecast. Soc. Chang. 137, 199–210 (2018)

    Article  Google Scholar 

  75. Kachaoui, J., Belangour, A.: An adaptive control approach for performance of big data storage systems. In: Ezziyyani, M. (ed.) AI2SD 2019. AISC, vol. 1105, pp. 89–97. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36674-2_9

    Chapter  Google Scholar 

  76. Wang, H., Jiang, Z., Zhang, H., Wang, Y., Yang, Y., Li, Y.: An integrated MCDM approach considering demands-matching for reverse logistics. J. Clean. Prod. 208, 199–210 (2019)

    Article  Google Scholar 

  77. Dev, N.K., Shankar, R., Gupta, R., Dong, J.: Multi-criteria evaluation of real-time key performance indicators of supply chain with consideration of big data architecture. Comput. Ind. Eng. 128, 1076–1087 (2019)

    Article  Google Scholar 

  78. Chalvatzis, K.J., Malekpoor, H., Mishra, N., Lettice, F., Choudhary, S.: Sustainable resource allocation for power generation: the role of big data in enabling interindustry architectural innovation. Technol. Forecast. Soc. Chang. 144, 381–393 (2019)

    Article  Google Scholar 

  79. Yasmin, M., Tatoglu, E., Kilic, H.S., Zaim, S., Delen, D.: Big data analytics capabilities and firm performance: an integrated MCDM approach. J. Bus. Res. 114, 1–15 (2020)

    Article  Google Scholar 

  80. Nasrollahi, M., Ramezani, J.: A model to evaluate the organizational readiness for big data adoption. Int. J. Comput. Commun. Control, 15(3) (2020)

    Google Scholar 

  81. Liou, J.J., Chang, M.H., Lo, H.W., Hsu, M.H.: Application of an MCDM model with data mining techniques for green supplier evaluation and selection. Appl. Soft Comput. 109, 107534 (2021)

    Google Scholar 

  82. Mahmoudi, A., Deng, X., Javed, S.A., Yuan, J.: Large-scale multiple criteria decision-making with missing values: project selection through TOPSIS-OPA. J. Ambient. Intell. Humaniz. Comput. 12(10), 9341–9362 (2020). https://doi.org/10.1007/s12652-020-02649-w

    Article  Google Scholar 

  83. Xu, X., et al.: A computation offloading method over big data for IoT-enabled cloud-edge computing. Futur. Gener. Comput. Syst. 95, 522–533 (2019)

    Article  Google Scholar 

  84. Chakraborty, B., Das, S.: Introducing a new supply chain management concept by hybridizing TOPSIS, IoT and cloud computing. J. Inst. Eng. (India): Ser. C 102(1), 109–119 (2020). https://doi.org/10.1007/s40032-020-00619-x

    Article  Google Scholar 

  85. Singla, C., Mahajan, N., Kaushal, S., Verma, A., Sangaiah, A.K.: Modelling and analysis of multi-objective service selection scheme in IoT-cloud environment. In: Cognitive computing for big data systems over IoT, pp. 63–77. Springer, Cham (2018). https://doi.org/10.1007/978-981-10-7635-0_17

  86. Albahri, O.S., et al.: Fault-tolerant mHealth framework in the context of IoT-based real-time wearable health data sensors. IEEE Access 7, 50052–50080 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Nath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nath, S., Das, P., Debnath, P. (2022). A Brief Review on Multi-Attribute Decision Making in the Emerging Fields of Computer Science. In: Mukhopadhyay, S., Sarkar, S., Dutta, P., Mandal, J.K., Roy, S. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2022. Communications in Computer and Information Science, vol 1579. Springer, Cham. https://doi.org/10.1007/978-3-031-10766-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10766-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10765-8

  • Online ISBN: 978-3-031-10766-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics