Skip to main content

Optimal MAC Scheduling Algorithm for Time-Sensitive Applications in Multi-UE Scenarios in 5G NR MmWave

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2022)

Abstract

5G Millimetre-wave (mmWave) utilizes frequencies ranging from 24 GHz to 100 GHz. There are various scheduling techniques in 5G mmWave, which work distinctly for different applications. Time-sensitive applications are very sensitive to the response time of resource allocation requests. We have compared the performance of various media access control (MAC) schedulers in scarce resources and the high demand of resources in the 5G mmWave network to find the optimal scheduler for the scenarios. We have used Netsim version 12.02 for the simulation.

We have created the simulation test-bed with user equipment (UEs) placed at different locations with different constant bit rate (CBR) applications in the 5G mmWave network and recorded the necessary observations. We have considered network metrics like throughput, delay, jitter, and a few other parameters to evaluate network performance. After analyzing data, we have found that max throughput is best suited for time-sensitive applications when UEs are placed near the next-generation base station (gNB). We arrived at this conclusion because throughput is approximately 33% and 6% higher than round-robin and Fair Scheduling algorithms. The delay of round-robin and Fair Scheduling is 192% and 231% higher than the max throughput. Also, jitter is almost 300% higher for the same. Similarly, The fair Scheduling algorithm is best suited for time-sensitive applications, placed far away from gNB, compared to round-robin, max throughput, and proportional fair Scheduling algorithms. Our findings will help service providers with limited resources and critical and time-sensitive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, A., Ahmad, S., Rehmani, M.H., Hassan, N.U.: A survey on radio resource allocation in cognitive radio sensor networks. IEEE Commun. Surv. Tutor. 17(2), 888–917 (2015)

    Article  Google Scholar 

  2. Akyildiz, I.F., Lee, W.Y., Vuran, M.C., Mohanty, S.: Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput. Netw. 50(13), 2127–2159 (2006). https://doi.org/10.1016/j.comnet.2006.05.001

    Article  MATH  Google Scholar 

  3. Roy, A., Pachuau, J.L., Saha, A.K.: An overview of queuing delay and various delay based algorithms in networks. Computing 103(10), 2361–2399 (2021). https://doi.org/10.1007/s00607-021-00973-3

    Article  MathSciNet  MATH  Google Scholar 

  4. Castaneda, E., Silva, A., Gameiro, A., Kountouris, M.: An overview on resource allocation techniques for multi-user mimo systems. IEEE Communications Surveys & Tutorials 19(1), 239–284 (2016). https://doi.org/10.1109/COMST.2016.2618870

    Article  Google Scholar 

  5. Clerckx, B., Joudeh, H., Hao, C., Dai, M., Rassouli, B.: Rate splitting for mimo wireless networks: a promising phy-layer strategy for lte evolution. IEEE Commun. Mag. 54(5), 98–105 (2016). https://doi.org/10.1109/MCOM.2016.7470942

    Article  Google Scholar 

  6. Firyaguna, F., Bonfante, A., Kibiłda, J., Marchetti, N.: Performance evaluation of scheduling in 5g-mmwave networks under human blockage. arXiv preprint arXiv:2007.13112 (2020)

  7. Fodor, G., Rácz, A., Reider, N., Temesváry, A.: Architecture and protocol support for radio resource management (rrm). In: Long Term Evolution, pp. 113–168. Auerbach Publications (2016)

    Google Scholar 

  8. Héliot, F., Imran, M.A., Tafazolli, R.: Low-complexity energy-efficient resource allocation for the downlink of cellular systems. IEEE Trans. Commun. 61(6), 2271–2281 (2013). https://doi.org/10.1109/TCOMM.2013.042313.120516

    Article  Google Scholar 

  9. Hyytiä, E., Aalto, S.: On round-robin routing with fcfs and lcfs scheduling. Perf. Eval. 97, 83–103 (2016). https://doi.org/10.1016/j.peva.2016.01.002

    Article  Google Scholar 

  10. Jabeen, S., Haque, A.: An ici-aware scheduler for nb-iot devices in co-existence with 5g nr. In: 2021 IEEE 4th 5G World Forum (5GWF), pp. 236–240 (2021). https://doi.org/10.1109/5GWF52925.2021.00048

  11. Jang, J., Lee, K.B.: Transmit power adaptation for multiuser of dm systems. IEEE J. Sel. Areas Commun. 21(2), 171–178 (2003). https://doi.org/10.1109/JSAC.2002.807348

    Article  Google Scholar 

  12. Mehaseb, M.A., Gadallah, Y., Elhamy, A., Elhennawy, H.: Classification of lte uplink scheduling techniques: an m2m perspective. IEEE Commun. Surv. Tutor. 18(2), 1310–1335 (2015). https://doi.org/10.1109/COMST.2015.2504182

    Article  Google Scholar 

  13. Müller, C.F., Galaviz, G., Andrade, Á.G., Kaiser, I., Fengler, W.: Evaluation of scheduling algorithms for 5G mobile systems. In: Sanchez, M.A., Aguilar, L., Castañón-Puga, M., Rodríguez-Díaz, A. (eds.) Computer Science and Engineering—Theory and Applications. SSDC, vol. 143, pp. 213–233. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74060-7_12

    Chapter  Google Scholar 

  14. Nilsson, P., Pióro, M.: Solving dimensioning tasks for proportionally fair networks carrying elastic traffic. Perf. Eval. 49(1–4), 371–386 (2002). https://doi.org/10.1016/S0166-5316.02.00114-1

    Article  MATH  Google Scholar 

  15. Olwal, T.O., Djouani, K., Kurien, A.M.: A survey of resource management toward 5G radio access networks. IEEE Commun. Surv. Tutor. 18(3), 1656–1686 (2016). https://doi.org/10.1109/COMST.2016.2550765

    Article  Google Scholar 

  16. Pedersen, K.I., Kolding, T.E., Frederiksen, F., Kovacs, I.Z., Laselva, D., Mogensen, P.E.: An overview of downlink radio resource management for utran long-term evolution. IEEE Commun. Mag. 47(7), 86–93 (2009). https://doi.org/10.1109/MCOM.2009.5183477

    Article  Google Scholar 

  17. Perdana, D., Sanyoto, A.N., Bisono, Y.G.: Performance evaluation and comparison of scheduling algorithms on 5g networks using network simulator. Int. J. Comput. Commun. Control 14(4), 530–539 (2019). https://doi.org/10.15837/ijccc.2019.4.3570

    Article  Google Scholar 

  18. Sesia, S., Toufik, I., Baker, M.: LTE-the UMTS Long Term Evolution: From Theory to Practice. John Wiley & Sons, Hoboken (2011)

    Book  Google Scholar 

  19. Sudipta Majumder, B.S.: Analysis of performance vulnerability of mac scheduling algorithms due to syn flood attack in 5g nr mmwave. Int. J. Adv. Technol. Eng. Explor. (2021). https://doi.org/10.19101/IJATEE.2021.874340

  20. Suganya, S., Maheshwari, S., Latha, Y.S., Ramesh, C.: Resource scheduling algorithms for lte using weights. In: 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), pp. 264–269. IEEE (2016). https://doi.org/10.1109/ICATCCT.2016.7912005

  21. Taboada, I., Liberal, F., Fajardo, J.O., Blanco, B.: An index rule proposal for scheduling in mobile broadband networks with limited channel feedback. Perf. Eval. 117, 130–142 (2017). https://doi.org/10.1016/j.peva.2017.09.007

    Article  Google Scholar 

  22. Wang, S., Xi, B., Zhang, Z., Deng, B.: A downlink scheduling algorithm based on network slicing for 5G. In: Gao, H., Fan, P., Wun, J., Xiaoping, X., Yu, J., Wang, Y. (eds.) ChinaCom 2020. LNICST, vol. 352, pp. 212–225. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67720-6_15

    Chapter  Google Scholar 

  23. Wu, J., Wang, M., Chan, Y.C., Wong, E.W., Kim, T.: Performance evaluation of 5g mmwave networks with physical-layer and capacity-limited blocking. In: 2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR), pp. 1–6. IEEE (2020). https://doi.org/10.1109/HPSR48589.2020.9098993

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Majumder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Majumder, S., Biswas, A. (2022). Optimal MAC Scheduling Algorithm for Time-Sensitive Applications in Multi-UE Scenarios in 5G NR MmWave. In: Mukhopadhyay, S., Sarkar, S., Dutta, P., Mandal, J.K., Roy, S. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2022. Communications in Computer and Information Science, vol 1579. Springer, Cham. https://doi.org/10.1007/978-3-031-10766-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10766-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10765-8

  • Online ISBN: 978-3-031-10766-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics