Skip to main content

Learning Based Image Classification Techniques

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2022)

Abstract

Although, deep learning approaches have attained remarkable advancements in the application of image classification, they require a large amount of training samples and machines with high computing power. Collecting huge samples against each class for training is a difficult task, sometimes even not possible. To tackle these disadvantages of deep learning-based approach, new paradigms of machine learning, such as Few-Shot Learning (FSL), One-Shot-Learning (OSL), and Zero-Shot-Learning (ZSL) have been developed. The paper presents a survey on various image classification methods which have been developed based on the FSL, OSL, or ZSL paradigm. This paper also highlights a comparative study of the methods and a summary of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chu, W., Li, Y., Chang, J., Wang Y.F.: Spot and learn: a maximum-entropy patch sampler for few-shot image classification. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6244–6253 (2019). https://doi.org/10.1109/CVPR.2019.00641

  2. Liu, B., Yu, X., Yu, A., Zhang, P., Wan, G., Wang, R.: Deep few-shot learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57(4), 2290–2304 (2019). https://doi.org/10.1109/TGRS.2018.2872830

  3. Debasmit, D., George Lee, C.S.: A Two-Stage Approach to Few-Shot Learning for Image Recognition. https://doi.org/10.1109/TIP.2019.2959254

  4. Prabhu, V., Kannan, A., et al.: Few-shot learning for dermatological disease diagnosis. In: Proceedings of the 4th Machine Learning for Healthcare Conference, in Proceedings of Machine Learning Research, vol. 106, pp. 532–552 (2019). https://proceed-ings.mlr.press/v106/prabhu19a.html

  5. Khodadadeh, S., et al.: Unsupervised Meta-Learning for Few-Shot Image Classification. arXiv:1811.11819

  6. Huaxi, H., Junjie, Z., et al.: Low-Rank Pairwise Alignment Bilinear Network for Few-Shot Fine-Grained Image Classification. https://doi.org/10.1109/TMM.2020.3001510

  7. Lu, L., Will, H., Guodong, L., Jing, J., Hugo, L.: A Universal Representation Transformer Layer for Few-Shot Image Classification. arXiv:2006.11702 (2020)

  8. Jianyi, L., Guizhong, L.: Few-Shot Image Classification via Contrastive Self-Supervised Learning (2020)

    Google Scholar 

  9. Xue, Z., Xie, Z., et al.: Relative position and map networks in few-shot learning for image classification. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 4032–4036, (2020). https://doi.org/10.1109/CVPRW50498.2020.00474

  10. Alajaji, D., Alhichri, H.S., Ammour, N., Alajlan N.: Few-shot learning for remote sensing scene classification. In: Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), pp. 81–84 (2020). https://doi.org/10.1109/M2GARSS47143.2020.9105154

  11. David, A., et al.: Few-shot learning approach for plant disease classification using images taken in the field. Comput. Electron. Agriculture, 175, 105542 (2020). https://doi.org/10.1016/j.compag.2020.105542

  12. Chi, Z., Yujun, C., Guosheng, L., Chunhua, S.: DeepEMD: few-shot image classification with differentiable earth mover's distance and structured classifiers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12203–12213 (2020)

    Google Scholar 

  13. Liu, S., Shi, Q., Zhang, L.: Few-shot hyperspectral image classification with unknown classes using multitask deep learning. IEEE Trans. Geosci. Remote Sens. 59(6), 5085–5102 (2021). https://doi.org/10.1109/TGRS.2020.3018879

  14. Li, Z., Liu, M., Chen, Y., et al.: Deep cross-domain few-shot learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–18 (2021)https://doi.org/10.1109/TGRS.2021.3057066

  15. Pal, D., Bundele, V., Banerjee, B., Jeppu, Y.: SPN stable prototypical network for few-shot learning-based hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021). https://doi.org/10.1109/LGRS.2021.3085522

  16. Li, Y., Chao, X.: Semi-supervised few-shot learning approach for plant diseases recognition. Plant Methods 17, 68 (2021). https://doi.org/10.1186/s13007-021-00770-1

    Article  Google Scholar 

  17. Kozerawski, J., Turk, M.: CLEAR cumulative LEARning for One-Shot One-Class Image recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3446–3455 (2018). https://doi.org/10.1109/CVPR.2018.00363

  18. Shou-Ching, H., Da-Yu, K., Zi-Yuan, L., Raylin, T.: Malware image classification using one-shot learning with siamese networks. Procedia Comput. Sci. 159, 1863–1871 (2019). https://doi.org/10.1016/j.procs.2019.09.358

    Article  Google Scholar 

  19. Arkabandhu, C., Dipak, C., Swarat, C., Chris, J.: Meta-Meta-Classification for One-Shot Learning (2020). arXiv:2004.08083

  20. Tobias, F., Dimos, B.: One Shot Learning for Deformable Medical Image Registration and Periodic Motion Tracking (2020), arXiv:1907.04641

  21. Hosseini, S.R., Taheri, A., et al.: One-shot learning from demonstration approach toward a reciprocal sign language-based HRI. Int. J. Soc. Robot. 10, 1–13 (2021).https://doi.org/10.1007/s12369-021-00818-1

  22. Niu, L., Veeraraghavan, A., Sabharwal, A.: Webly supervised learning meets zero-shot learning: a hybrid approach for fine-grained classification. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7171–7180 (2018). https://doi.org/10.1109/CVPR.2018.00749

  23. Rong, G., Xin, X., et al.: A generalized zero-shot learning framework for PolSAR land cover classification. Remote Sens. 10(8), 1307 (2018). https://doi.org/10.3390/rs10081307

  24. Xiaolong, W., Yufei, Y., Abhinav, G.: Zero-shot recognition via semantic embeddings and knowledge graphs. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018). https://doi.org/10.1109/CVPR.2018.00717

  25. Rafael, F., Michele, S., et al.: Multi-modal Ensemble Classification for Generalized Zero Shot Learning (2019), arXiv:1901.04623

  26. Jingjing, L., Mengmeng, J., et al.: Leveraging the invariant side of generative zero-shot learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7394–7403 (2019). https://doi.org/10.1109/CVPR.2019.00758

  27. Edgar, S., Sayna, E., et al.: Generalized Zero- and Few-Shot Learning via Aligned Variational Autoencoders (2018), arXiv:1812.01784

  28. Mohammad, R., Soheil, K., et al.: Zero-Shot Image Classification Using Coupled Dictionary Embedding. In: AAAI (2019). arXiv:1906.10509

  29. Dat, H., Ehsan, E.: A shared multi-attention framework for multi-label zero-shot learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020). https://doi.org/10.1109/CVPR42600.2020.00880

  30. Varun, K., Divyat, M., et al.: A generative framework for zero-shot learning with adversarial domain adaptation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3101–3110 (2020)

    Google Scholar 

  31. Konstantinos, D., Lazaros, I.: GeoAI: a model-agnostic meta-ensemble zero-shot learning method for hyperspectral image analysis and classification. MDPI (2020).https://doi.org/10.3390/a13030061www

  32. Akshita, G., et al.: Generative multi-label zero-shot learning (2021). arXiv preprint arXiv:2101.11606

  33. Wei, W., et al.: A survey of zero-shot learning: settings, methods, and applications. ACM Trans. Intell. Syst. Technol. 10, 1–37 (2019). https://doi.org/10.1145/3293318

    Article  Google Scholar 

  34. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple visual concepts. In: Proceeding of the Annual Meeting of the Cognitive Science Society, vol. 3 (2011)

    Google Scholar 

  35. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  36. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: CVPR (2010)

    Google Scholar 

  37. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200–2011 Dataset. Technical Report CNS-TR-2011–001, California Institute of Technology (2011)

    Google Scholar 

  38. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 266–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_16

    Chapter  Google Scholar 

  39. Ren, M., et al.: Meta-learning for semi-supervised fewshot classification. In: ICLR (2018)

    Google Scholar 

  40. Luca, B., Joao, F.H., Philip, H.S.T., Andrea, V.: Meta-learning with differentiable closed-form solvers. arXiv preprint arXiv:1805.08136 (2018)

  41. Boris, O., Pau, R.L., Alexandre, L.T.: Task dependent adaptive metric for improved few-shot learning. In: NIPS (2018)

    Google Scholar 

  42. Liu, C., Xu, C., Wang, Y., Zhang, L., Fu, Y.: An embarrassingly simple baseline to one-shot learning. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 2020, 4005–4009 (2020). https://doi.org/10.1109/CVPRW50498.2020.00469

    Article  Google Scholar 

  43. Mahapatra, D., Bozorgtabar, B., Ge, Z.: Medical image classification using generalized zero shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3344–3353 (2021)

    Google Scholar 

  44. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 453–465 (2013)

    Article  Google Scholar 

  45. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2251–2265 (2018)

    Article  Google Scholar 

  46. Nilsback, M., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics Image, pp. 722–729 (2008)

    Google Scholar 

  47. Bandi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17 challenge. IEEE Trans. Med. Imag. 38(2), 550–560 (2019)

    Article  Google Scholar 

  48. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: hospital-scale chest x-ray database and bench-marks on weakly-supervised classification and localization of common thorax diseases. In: Proceeding CVPR (2017)

    Google Scholar 

  49. Jeremy, I., Pranav, R., Michael, K., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. arXiv preprint arXiv:1901.07031 (2017)

  50. Kaggle and EyePacs. Kaggle diabetic retinopathy detection. https://www.kaggle.com/c/diabetic-retinopathydetection/data, July 2015

  51. Karimi, D., Nir, G., et al.: Deep learning-based gleason grading of prostate cancer from histopathology images-role of multiscale decision aggregation and data augmentation. IEEE J. Biomed. Health Inform. 24(5), 1413–1426 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayan Kumar Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarkar, N.K., Singh, M.M., Nandi, U. (2022). Learning Based Image Classification Techniques. In: Mukhopadhyay, S., Sarkar, S., Dutta, P., Mandal, J.K., Roy, S. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2022. Communications in Computer and Information Science, vol 1579. Springer, Cham. https://doi.org/10.1007/978-3-031-10766-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10766-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10765-8

  • Online ISBN: 978-3-031-10766-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics