Skip to main content

KGESS - A Knowledge Graph Embedding Method Based on Semantics and Structure

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13368))

  • 1644 Accesses

Abstract

To achieve a better performance in the downstream task of knowledge graph (KG), a good representation of KG is necessary. Sensing from the topological structure of the graph, most conventional methods tend to ignore the semantic features of nodes, which is significant for describing the entity in KG. In this paper, we propose a novel Knowledge Graph Embedding method based on Semantics and Structure (KGESS), which learned the representation of KG from both topological facts and semantic information. It leverages Chinese BERT to obtain semantic features of the entity first. Then it further enhances these features via a neural module, namely Semantic Feature Extractor. To evaluate the performance of KGESS, we utilize an additional linear module to execute the link prediction task. Experimental results demonstrate that KGESS achieves a superior Hit@k score than conventional methods, indicating the effectiveness of the idea of enhancing structure with semantics in the representation task of KG.

X. Chen and Z. Ma—Co-author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. Adv. Neural Inf. Process. Syst. 26 (2013)

    Google Scholar 

  2. Bosselut, A., Rashkin, H., Sap, M., Malaviya, C., Celikyilmaz, A., Choi, Y.: COMET: commonsense transformers for automatic knowledge graph construction. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4762–4779. Association for Computational Linguistics, Florence, Italy, July 2019. https://doi.org/10.18653/v1/P19-1470, https://aclanthology.org/P19-1470

  3. Danqi, C., Richard, S., et al.: Learning new facts from knowledge bases with neural tensor networks and semantic word vectors. Comput. Sci. 1, 392–399 (2013)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota, June 2019. https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/N19-1423

  5. Gao, Tianyu, Zhang, Yuanming, Li, Mengni, Lu, Jiawei, Cheng, Zhenbo, Xiao, Gang: Representation learning of knowledge graph with semantic vectors. In: Qiu, Han, Zhang, Cheng, Fei, Zongming, Qiu, Meikang, Kung, Sun-Yuan. (eds.) KSEM 2021. LNCS (LNAI), vol. 12816, pp. 16–29. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82147-0_2

    Chapter  Google Scholar 

  6. Hu, F., Lakdawala, S., Hao, Q., Qiu, M.: Low-power, intelligent sensor hardware interface for medical data preprocessing. IEEE Trans. Inf Technol. Biomed. 13(4), 656–663 (2009)

    Article  Google Scholar 

  7. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (vol. 1: Long Papers), pp. 687–696 (2015)

    Google Scholar 

  8. Li, Y., Song, Y., Jia, L., Gao, S., Li, Q., Qiu, M.: Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning. IEEE Trans. Industr. Inf. 17(4), 2833–2841 (2020)

    Article  Google Scholar 

  9. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  10. Lv, X., Hou, L., Li, J., Liu, Z.: Differentiating concepts and instances for knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1971–1979. Association for Computational Linguistics, Brussels, Belgium (October–November 2018). https://doi.org/10.18653/v1/D18-1222, https://aclanthology.org/D18-1222

  11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  12. Ouyang, X., Yang, Y., He, L., Chen, Q., Zhang, J.: Representation learning with entity topics for knowledge graphs. In: International Conference on Knowledge Science, Engineering and Management, pp. 534–542. Springer (2017). https://doi.org/10.1007/978-3-319-63558-3_45

  13. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  14. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long Papers), pp. 2227–2237. Association for Computational Linguistics, New Orleans, Louisiana, June 2018. https://doi.org/10.18653/v1/N18-1202, https://aclanthology.org/N18-1202

  15. Qiu, H., Zheng, Q., Msahli, M., Memmi, G., Qiu, M., Lu, J.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. Intell. Transp. Syst. 22(7), 4560–4569 (2020)

    Article  Google Scholar 

  16. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  17. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  18. Wang, D., Liu, P., Zheng, Y., Qiu, X., Huang, X.: Heterogeneous graph neural networks for extractive document summarization. arXiv preprint arXiv:2004.12393 (2020)

  19. Wang, H., Kulkarni, V., Wang, W.Y.: DOLORES: deep contextualized knowledge graph embeddings. CoRR abs/1811.00147 (2018). http://arxiv.org/abs/1811.00147

  20. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph and text jointly embedding. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1591–1601 (2014)

    Google Scholar 

  21. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  22. Wang, Z., Li, J., Liu, Z., Tang, J.: Text-enhanced representation learning for knowledge graph. In: Proceedings of International Joint Conference on Artificial Intelligent (IJCAI), pp. 4–17 (2016)

    Google Scholar 

  23. Xie, R., Liu, Z., Luan, H., Sun, M.: Image-embodied knowledge representation learning. arXiv preprint arXiv:1609.07028 (2016)

  24. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  25. Yao, L., Mao, C., Luo, Y.: KG-BERT: BERT for knowledge graph completion. CoRR abs/1909.03193 (2019). http://arxiv.org/abs/1909.03193

  26. Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., Liu, Q.: ERNIE: enhanced language representation with informative entities. arXiv preprint arXiv:1905.07129 (2019)

Download references

Acknowledgements

This work was supported in part by the projects of the National Natural Science Foundation of China (61702119, 62006049), the Natural Science Foundation of Guangdong Province (2016A010101029, 2018A0303130055, 2019A1515012048), Science and Technology Program of Guangzhou (201802010029), and the Science and Technology Program of Guangzhou, China under Grant (201804010236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaopeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Ma, Z., Xiao, Z., Xia, Q., Liu, S. (2022). KGESS - A Knowledge Graph Embedding Method Based on Semantics and Structure. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13368. Springer, Cham. https://doi.org/10.1007/978-3-031-10983-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10983-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10982-9

  • Online ISBN: 978-3-031-10983-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics