Skip to main content

Relation Prediction Based on Source-Entity Behavior Preference Modeling via Heterogeneous Graph Pooling

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13368))

Abstract

Recent years have witnessed great advance of representation learning (RL) based models for the knowledge graph relation prediction task. Most existing approaches represent graph nodes as vectors in a low-dimensional embedding space, ignoring the entity behavior preference and the beneficial semantic interactions in the real-world graphs. To address this challenge, this paper proposes a novel relation prediction model based on source-entity behavior preference modeling, which represents each source-entity as a heterogeneous graph released from their structure and semantic perspectives to better capture the behavior relatedness. Especially, a heterogeneous graph pooling method is leveraged for learning source-entity behavior embedding representation from this personalized heterogeneous graph. In our comprehensive experiments, we evaluate our model on real-world graphs, and the results demonstrate that the proposed model significantly outperforms existing state-of-the-art methods on benchmark datasets for the relation prediction and knowledge graph completion task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(T=3\) for \(\mathcal {G}^{0}\) in our scene as shown in different colors in Fig. 1. However, due to the scalability of the proposed architecture, when more node types are introduced into the heterogeneous graph, our architecture is still at work.

References

  1. An, B., Chen, B., Han, X., Sun, L.: Accurate text-enhanced knowledge graph representation learning. In: NAACL-HLT (2018)

    Google Scholar 

  2. Arora, S.: A survey on graph neural networks for knowledge graph completion. arXiv: abs/2007.12374 (2020)

  3. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: Joint learning of words and meaning representations for open-text semantic parsing. In: AISTATS (2012)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS 2013, pp. 2787–2795 (2013)

    Google Scholar 

  5. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: AAAI 2011, pp. 301–306 (2011)

    Google Scholar 

  6. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: COMPSTAT (2010)

    Google Scholar 

  7. Huang, H., Wang, Y., Feng, C., Liu, Z., Zhou, Q.: Leveraging conceptualization for short-text embedding. IEEE Trans. Knowl. Data Eng. 30(7), 1282–1295 (2018)

    Article  Google Scholar 

  8. Huxue, R., Huang, J., Wang, J., Li, Y.: Learning gaussian hierarchy embedding for relation prediction in knowledge graph. J. Phys. Conf. Ser. 1748, 032039 (2021)

    Google Scholar 

  9. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL (2015)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)

    Google Scholar 

  11. Lin, Y., Liu, Z., Luan, H.B., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: EMNLP (2015)

    Google Scholar 

  12. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI 2015, pp. 2181–2187 (2015)

    Google Scholar 

  13. Ma, S., Ding, J., Jia, W., Wang, K., Guo, M.: TransT: type-based multiple embedding representations for knowledge graph completion. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 717–733 (2017)

    Google Scholar 

  14. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 1955–1961 (2016)

    Google Scholar 

  15. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: International Conference on International Conference on Machine Learning, pp. 809–816 (2011)

    Google Scholar 

  16. Song, Y., Wang, S., Wang, H.: Open domain short text conceptualization: a generative + descriptive modeling approach. In: International Conference on Artificial Intelligence, pp. 3820–3826 (2015)

    Google Scholar 

  17. Trouillon, T., Welbl, J., Riedel, S., Éric Gaussier, Bouchard, G.: Complex embeddings for simple link prediction (2016)

    Google Scholar 

  18. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., Bengio, Y.: Graph attention networks. arXiv:abs/1710.10903 (2018)

  19. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29, 2724–2743 (2017)

    Article  Google Scholar 

  20. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019)

    Google Scholar 

  21. Wang, Y., yan Huang, H., Feng, C.: Query expansion with local conceptual word embeddings in microblog retrieval. IEEE Trans. Knowl. Data Eng. 33, 1737–1749 (2021)

    Google Scholar 

  22. Wang, Y., Liu, Y., Zhang, H., Xie, H.: Leveraging lexical semantic information for learning concept-based multiple embedding representations for knowledge graph completion. In: APWeb/WAIM (2019)

    Google Scholar 

  23. Wang, Y., Zhang, H.: HARP: a novel hierarchical attention model for relation prediction. ACM Trans. Knowl. Discov. Data 15, 17:1–17:22 (2021)

    Google Scholar 

  24. Wang, Y., Zhang, H.: Introducing graph neural networks for few-shot relation prediction in knowledge graph completion task. In: KSEM (2021)

    Google Scholar 

  25. Wang, Y., Zhang, H., Li, Y., Xie, H.: Simplified representation learning model based on parameter-sharing for knowledge graph completion. In: CCIR (2019)

    Google Scholar 

  26. Wang, Y., Zhang, H., Liu, Z., Zhou, Q.: Hierarchical concept-driven language model. ACM Trans. Knowl. Disc. Data (TKDD) 15, 1–22 (2021)

    Article  Google Scholar 

  27. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI 2014, pp. 1112–1119 (2014)

    Google Scholar 

  28. Wang, Z., Zhao, K., Wang, H., Meng, X., Wen, J.R.: Query understanding through knowledge-based conceptualization. In: International Conference on Artificial Intelligence, pp. 3264–3270 (2015)

    Google Scholar 

  29. Wu, C., Wu, F., Huang, Y., Xie, X.: User-as-graph: User modeling with heterogeneous graph pooling for news recommendation. In: IJCAI (2021)

    Google Scholar 

  30. Wu, W., Li, H., Wang, H., Zhu, K.Q.: Probase: a probabilistic taxonomy for text understanding. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 481–492 (2012)

    Google Scholar 

  31. Wu, W., Li, H., Wang, H., Zhu, K.Q.: Probase: a probabilistic taxonomy for text understanding. In: ACM SIGMOD International Conference on Management of Data, pp. 481–492 (2012)

    Google Scholar 

  32. Xiao, H., Huang, M., Zhu, X.: TransG : a generative model for knowledge graph embedding. In: Meeting of the Association for Computational Linguistics, pp. 2316–2325 (2016)

    Google Scholar 

  33. Xie, R., Liu, Z., Jia, J.J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: AAAI (2016)

    Google Scholar 

  34. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. arXiv:abs/1806.08804 (2018)

  35. Zhao, L., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21, 3848–3858 (2020)

    Google Scholar 

  36. Zhao, Y., et al.: Time-aware path reasoning on knowledge graph for recommendation. ACM Trans. Inf. Syst. (TOIS) (2022). https://doi.org/10.1145/3531267

Download references

Acknowledgements

We thank anonymous reviewers for valuable comments. This work is funded by: (i) the National Natural Science Foundation of China (No. 62106243, U19B2026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Zhu, X., Zhang, H. (2022). Relation Prediction Based on Source-Entity Behavior Preference Modeling via Heterogeneous Graph Pooling. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13368. Springer, Cham. https://doi.org/10.1007/978-3-031-10983-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10983-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10982-9

  • Online ISBN: 978-3-031-10983-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics