Skip to main content

A Link Prediction Method Based on Graph Neural Network Using Node Importance

  • Conference paper
  • First Online:
  • 1739 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13369))

Abstract

Link prediction is a challenging task in complex networks and data mining. Its primary purpose is to predict the possibility of links in the future. Link prediction has many application scenarios, such as product recommendations on e-commerce platforms, friend mining on social platforms, etc. Existing link prediction methods focus on utilizing neighbor and path information, ignoring the contribution of link formation of different node importance. For this reason, we propose a novel link prediction method based on node importance. The importance of node is calculated by using the topology structure of the directed network and the path information between nodes, and a graph convolutional network model suitable for directed graphs is designed. The importance of nodes is used to control the model to aggregate the neighbor information, thereby generating the vector representation of the node and obtaining the prediction score through the multi-layer perceptron (MLP). We investigate the proposed method and conduct extensive experiments on 6 real-world networks from various domains. The experiments results illustrate that the proposed method outperforms existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adamic, Lada A., Adar, Eytan: Friends and neighbors on the Web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  2. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 U.S. election: Divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, LinkKDD 2005, pp. 36–43. Association for Computing Machinery, New York, NY, USA (2005)

    Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Batagelj, V., Mrvar, A.: Pajek-program for large network analysis. Connections 21(2), 47–57 (1998)

    MATH  Google Scholar 

  5. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  6. Cai, L., Ji, S.: A multi-scale approach for graph link prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3308–3315 (2020)

    Google Scholar 

  7. Cai, L., Li, J., Wang, J., Ji, S.: Line graph neural networks for link prediction. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  8. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. 104(27), 11150–11154 (2007)

    Article  Google Scholar 

  9. Chowdhury, G.G.: Introduction to Modern Information Retrieval. Facet Publishing (2010)

    Google Scholar 

  10. Coleman, J.S., et al.: Introduction to Mathematical Sociology (1964)

    Google Scholar 

  11. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)

    Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    Google Scholar 

  13. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)

    Google Scholar 

  14. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (2012)

    Google Scholar 

  15. Hu, F., Lakdawala, S., Hao, Q., Qiu, M.: Low-power, intelligent sensor hardware interface for medical data preprocessing. IEEE Trans. Inf. Technol. Biomed. 13(4), 656–663 (2009)

    Article  Google Scholar 

  16. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  19. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: 32nd AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  20. Li, Y., Song, Y., Jia, L., Gao, S., Li, Q., Qiu, M.: Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning. IEEE Trans. Industr. Inf. 17(4), 2833–2841 (2021)

    Article  Google Scholar 

  21. Ma, Y., Hao, J., Yang, Y., Li, H., Jin, J., Chen, G.: Spectral-based graph convolutional network for directed graphs. arXiv preprint arXiv:1907.08990 (2019)

  22. Qiu, H., Zheng, Q., Msahli, M., Memmi, G., Qiu, M., Lu, J.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. Intell. Transp. Syst. 22(7), 4560–4569 (2021)

    Article  Google Scholar 

  23. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  Google Scholar 

  24. Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and visualization. In: 29th AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  25. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2015)

    Google Scholar 

  26. Tong, Z., Liang, Y., Sun, C., Li, X., Rosenblum, D., Lim, A.: Digraph inception convolutional networks. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 17907–17918. Curran Associates, Inc. (2020)

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  28. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  29. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. nature 393(6684), 440–442 (1998)

    Google Scholar 

  30. Xia, L., et al.: Knowledge-enhanced hierarchical graph transformer network for multi-behavior recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4486–4493 (2021)

    Google Scholar 

  31. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  32. Zareie, A., Sheikhahmadi, A., Jalili, M.: Influential node ranking in social networks based on neighborhood diversity. Fut. Gener. Comput. Syst. 94, 120–129 (2019)

    Article  Google Scholar 

  33. Zhang, M., Chen, Y.: Weisfeiler-Lehman neural machine for link prediction. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 575–583 (2017)

    Google Scholar 

  34. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. Adv. Neural. Inf. Process. Syst. 31, 5165–5175 (2018)

    Google Scholar 

  35. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: 32nd AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  36. Zhang, X., Zhao, C., Wang, X., Yi, D.: Identifying missing and spurious interactions in directed networks. Int. J. Distrib. Sens. Netw. 11(9), 507386 (2015)

    Article  Google Scholar 

  37. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. 34(1), 249–270 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, L., Tang, Y., Yuan, Y. (2022). A Link Prediction Method Based on Graph Neural Network Using Node Importance. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13369. Springer, Cham. https://doi.org/10.1007/978-3-031-10986-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10986-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10985-0

  • Online ISBN: 978-3-031-10986-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics