Skip to main content

Bridging Signals and Human Intelligence

Log Mining-Driven and Meta Model-Guided Ontology Population in Large-Scale IoT

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2022)

Abstract

Large-scale Internet-of-Things (IoT) environments such as Intelligent Transportation Systems are facing tremendous challenges wrt. monitoring their operational technology (OT) not least due to its inherent heterogeneous and evolutionary nature. This situation is often aggravated by the lack of machine-interpretable information about the interdependencies between OT objects in terms of “semantic relationships”, thus considerably impeding the detection of root causes of cross-system errors or interrelated impacts. Therefore, we propose a novel hybrid approach for identifying semantic relationships based on both, mined functional correlations between OT objects based on log files and domain knowledge in terms of an IoT meta model. For this, we firstly contribute a systematic discussion of associated challenges faced in large-scale IoT environments, secondly, we put forward an IoT meta model based on both, industry standards and academic proposals, and finally, we employ this meta model as guidance and target template for the automatic population of semantic relationships into an OT ontology.

This work is supported by: the Austrian Research Promotion Agency (FFG) under grant FFG Forschungspartnerschaften 874490 and by Erasmus+ under grant agreement No 2021-1-SI01-KA220-HED-000032218, project ID KA220-HED-15/21.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please note that the notation sticks to UML class and object diagrams, whereas the red lines between objects represent a functional correlation and yellow arrows represent the impact one object has on another object in real-world.

  2. 2.

    https://apex.oracle.com/.

References

  1. DATEX II. https://www.datex2.eu

  2. Open Platform Communications Unified Architecture (OPC UA). https://opcfoundation.org

  3. Pecchia, A., Weber, I., Cinque, M., Ma, Y.: Discovering process models for the analysis of application failures under uncertainty of event logs. Knowl.-Based Syst. 189, 105054 (2020)

    Article  Google Scholar 

  4. Brauner, P., et al.: A computer science perspective on digital transformation in production. ACM Trans. Internet Things 3(2), 1–32 (2022)

    Article  Google Scholar 

  5. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  Google Scholar 

  6. Amato, F., et al.: Detect and correlate information system events through verbose logging messages analysis. Computing 101(7), 819–830 (2019)

    Article  MathSciNet  Google Scholar 

  7. Belkaroui, R., et al.: Towards events ontology based on data sensors network for viticulture domain. In: Proceedings of the 8th International Conference on the Internet of Things, pp. 1–7. ACM (2018)

    Google Scholar 

  8. Detro, S., et al.: Enhancing semantic interoperability in healthcare using semantic process mining. In: Proceedings of International Conference on Information Society and Technology, pp. 80–85 (2016)

    Google Scholar 

  9. Endler, M., et al.: Towards stream-based reasoning and machine learning for IoT applications. In: Intelligent System Conference, pp. 202–209. IEEE (2017)

    Google Scholar 

  10. Graf, D., et al.: Cutting a path through the IoT ontology jungle - a meta survey. In: International Conference on Internet of Things and Intelligence Systems. IEEE (2019)

    Google Scholar 

  11. Graf, D., Schwinger, W., Retschitzegger, W., Kapsammer, E., Baumgartner, N.: Event-driven ontology population - from research to practice in critical infrastructure systems. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds.) WorldCIST 2021. AISC, vol. 1366, pp. 405–415. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72651-5_39

    Chapter  Google Scholar 

  12. Graf, D., et al.: Dependency mining in IoT - from research to practice in intelligent transportation systems. In: Rocha, A., Adeli, H., Dzemyda, G., Moreira, F. (eds.) Information Systems and Technologies. WorldCIST 2022. LNCS, vol. 469. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04819-7_26

  13. Graf, D., et al.: Semantic-driven mining of functional dependencies in large-scale systems-of-systems. In: Rocha, Á., Ferrás, C., Méndez Porras, A., Jimenez Delgado, E. (eds.) Information Technology and Systems. ICITS 2022. LNCS, vol. 414. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96293-7_31

  14. Haller, A., et al.: The SOSA/SSN ontology: a joint WEC and OGC standard specifying the semantics of sensors observations actuation and sampling. In: Semantic Web, vol. 1, pp. 1–19. IOS Press (2018)

    Google Scholar 

  15. Hromic, H., et al.: Real time analysis of sensor data for the IoT by means of clustering and event processing. In: Proceedings of International Conference on Communications, pp. 685–691. IEEE (2015)

    Google Scholar 

  16. Janiesch, C., el al.: The Internet of Things meets business process management: a manifesto. IEEE Syst. Man Cybern. Mag. 6(4), 34–44 (2020)

    Google Scholar 

  17. Jayawardana, V., et al.: Semi-supervised instance population of an ontology using word vector embeddings. In: Proceedings of International Conference on Advances in ICT for Emerging Regions, pp. 217–223. IEEE (2017)

    Google Scholar 

  18. Körber, M., Glombiewski, N., Morgen, A., Seeger, B.: TPStream: low-latency and high-throughput temporal pattern matching on event streams. Distrib. Parallel Databases 39(2), 361–412 (2019)

    Google Scholar 

  19. Matzner, M., Scholta, H.: Process mining approaches to detect organizational properties in CPS. In: European Conference on Information Systems (2014)

    Google Scholar 

  20. Messager, A., et al.: Inferring functional connectivity from time-series of events in large scale network deployments. Trans. Netw. Serv. Manag. 16(3), 857–870 (2019)

    Article  Google Scholar 

  21. Noura, M., Atiquzzaman, M., Gaedke, M.: Interoperability in Internet of Things infrastructure: classification, challenges, and future work. In: Lin, Y.-B., Deng, D.-J., You, I., Lin, C.-C. (eds.) IoTaaS 2017. LNICST, vol. 246, pp. 11–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00410-1_2

    Chapter  Google Scholar 

  22. Reyes-Ortiz, J., et al.: Web services ontology population through text classification. In: Proceedings of Conference on Computer Science and Information Systems, pp. 491–495. IEEE (2016)

    Google Scholar 

  23. Schuster, D., et al.: Utilizing domain knowledge in data-driven process discovery: a literature review. Comput. Ind. 137, 103612 (2022)

    Article  Google Scholar 

  24. Seydoux, N., Drira, K., Hernandez, N., Monteil, T.: IoT-O, a core-domain IoT ontology to represent connected devices networks. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 561–576. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5_36

    Chapter  Google Scholar 

  25. Zhu, M., et al.: Service hyperlink: modeling and reusing partial process knowledge by mining event dependencies among sensor data services. In: Proceedings of International Conference on Web Services, pp. 902–905. IEEE (2017)

    Google Scholar 

  26. Zhuge, C., Vaarandi, R.: Efficient event log mining with LogClusterC. In: Proceedings of International Conference on Big Data Security on Cloud, pp. 261–266. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Graf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Graf, D., Retschitzegger, W., Schwinger, W., Kapsammer, E., Baumgartner, N. (2022). Bridging Signals and Human Intelligence. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13369. Springer, Cham. https://doi.org/10.1007/978-3-031-10986-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10986-7_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10985-0

  • Online ISBN: 978-3-031-10986-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics