Skip to main content

Mario Fast Learner: Fast and Efficient Solutions for Super Mario Bros

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13369))

  • 2150 Accesses

Abstract

Super Mario Bros (SMB) are popular video games. Reinforcement learning has solved various problems including robot control and the game of Go. This article focuses on reinforcement learning methods for Super Mario Bros (SMB) games. Previous methods could solve all available SMB single player open source levels by using reinforcement learning methods. The article summarizes that previous evaluation metrics include reward function, loss function and the arrival of the endpoint flag but these metrics cannot fully judge the quality of the policies. The article analyzes the difficulties for agents to complete SMB levels and points out the problems that need to be solved. To solve the problems, the article proposes a new judging metric for SMB games called 100 recent accuracy. The article propose a solution to speed up the training procedure and improve the experimental results. According to the experimental results, the new solution has good experimental performance under the new evaluation metrics proposed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bros, S.M.: Nintendo entertainment system. Developed by Nintendo, Nintendo (1985)

    Google Scholar 

  2. Pedersen, C., Togelius, J., Yannakakis, G.N.: Modeling player experience in Super Mario Bros. In: 2009 IEEE Symposium on Computational Intelligence and Games, pp. 132–139 (2009). https://doi.org/10.1109/CIG.2009.5286482

  3. Togelius, J., Karakovskiy, S., Koutnik, J., Schmidhuber, J.: Super Mario evolution. In: 2009 IEEE Symposium on Computational Intelligence and Games, pp. 156–161 (2009). https://doi.org/10.1109/CIG.2009.5286481

  4. Shaker, N., Nicolau, M., Yannakakis, G.N., Togelius, J., O’neill, M.: Evolving levels for Super Mario Bros using grammatical evolution. In: 2012 IEEE Conference on Computational Intelligence and Games (CIG), pp. 304–311. IEEE (2012)

    Google Scholar 

  5. Ortega, J., Shaker, N., Togelius, J., Yannakakis, G.N.: Imitating human playing styles in Super Mario Bros. Entertain. Comput. 4(2), 93–104 (2013)

    Article  Google Scholar 

  6. Demaine, E.D., Viglietta, G., Williams, A.: Super Mario Bros. Is harder/easier than we thought. In: Demaine, E.D., Grandoni, F. (eds.) 8th International Conference on Fun with Algorithms, FUN 2016. Leibniz International Proceedings in Informatics (LIPIcs), vol. 49, pp. 13:1–13:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.FUN.2016.13. http://drops.dagstuhl.de/opus/volltexte/2016/5880

  7. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  8. Schrittwieser, J., et al.: Mastering Atari, Go, chess and shogi by planning with a learned model. nature 588(7839), 604–609 (2020)

    Article  Google Scholar 

  9. Johannink, T., et al.: Residual reinforcement learning for robot control. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6023–6029. IEEE (2019)

    Google Scholar 

  10. Zhang, R., Lv, Q., Li, J., Bao, J., Liu, T., Liu, S.: A reinforcement learning method for human-robot collaboration in assembly tasks. Robot. Comput. Integr. Manuf. 73, 102227 (2022)

    Article  Google Scholar 

  11. Heuillet, A., Couthouis, F., DĂ­az-RodrĂ­guez, N.: Explainability in deep reinforcement learning. Knowl. Based Syst. 214, 106685 (2021)

    Article  Google Scholar 

  12. Yarats, D., Fergus, R., Lazaric, A., Pinto, L.: Reinforcement learning with prototypical representations. In: International Conference on Machine Learning, pp. 11920–11931. PMLR (2021)

    Google Scholar 

  13. Zhang, N., Song, Z.: Super reinforcement bros: playing Super Mario Bros with reinforcement learning (2020)

    Google Scholar 

  14. Shu, T., Liu, J., Yannakakis, G.N.: Experience-driven PCG via reinforcement learning: a Super Mario Bros study. In: 2021 IEEE Conference on Games (CoG), pp. 1–9. IEEE (2021)

    Google Scholar 

  15. Bougie, N., Ichise, R.: Fast and slow curiosity for high-level exploration in reinforcement learning. Appl. Intell. 51(2), 1086–1107 (2020). https://doi.org/10.1007/s10489-020-01849-3

    Article  MATH  Google Scholar 

  16. Brockman, G., et al.: OpenAI Gym (2016)

    Google Scholar 

  17. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  18. Kauten, C.: Super Mario Bros for OpenAI Gym. GitHub (2018). https://github.com/Kautenja/gym-super-mario-bros

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, C. (2022). Mario Fast Learner: Fast and Efficient Solutions for Super Mario Bros. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13369. Springer, Cham. https://doi.org/10.1007/978-3-031-10986-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10986-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10985-0

  • Online ISBN: 978-3-031-10986-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics