Skip to main content

Dual Adversarial Federated Learning on Non-IID Data

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2022)

Abstract

Federated Learning (FL) enables multiple distributed local clients to coordinate with a central server to train a global model without sharing their private data. However, the data owned by different clients, even with the same label, may induce conflicts in the latent feature maps, especially under the non-IID FL scenarios. This would fatally impair the performance of the global model. To this end, we propose a novel approach, DAFL, for Dual Adversarial Federated Learning, to mitigate the divergence on latent feature maps among different clients on non-IID data. In particular, a local dual adversarial training is designed to identify the origins of latent feature maps, and then transforms the conflicting latent feature maps to reach a consensus between global and local models in each client. Besides, the latent feature maps of the two models become closer to each other adaptively by reducing their Kullback Leibler divergence. Extensive experiments on benchmark datasets validate the effectiveness of DAFL and also demonstrate that DAFL outperforms the state-of-the-art approaches in terms of test accuracy under different non-IID settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arora, S., Ge, R., Liang, Y., Ma, T., Zhang, Y.: Generalization and equilibrium in generative adversarial nets (GANs). In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML, vol. 70, pp. 224–232. PMLR (2017)

    Google Scholar 

  2. Bonawitz, K.A., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS, pp. 1175–1191. ACM (2017)

    Google Scholar 

  3. Fallah, A., Mokhtari, A., Ozdaglar, A.E.: Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach (2020)

    Google Scholar 

  4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML, vol. 70, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  5. Goodfellow, I.J., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  6. Guo, X., Liu, Z., Li, J., et al.: VeriFL: communication-efficient and fast verifiable aggregation for federated learning. IEEE Trans. Inf. Forensics Secur. 16, 1736–1751 (2021)

    Article  Google Scholar 

  7. Kaissis, G., Makowski, M.R., Rueckert, D., Braren, R.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2(6), 305–311 (2020)

    Article  Google Scholar 

  8. Karimireddy, S.P., et al.: SCAFFOLD: stochastic controlled averaging for federated learning. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  9. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Handbook Syst. Autoimmune Dis. 1(4), 7 (2009)

    Google Scholar 

  10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  11. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: Dhillon, I.S., Papailiopoulos, D.S., Sze, V. (eds.) Proceedings of Machine Learning and Systems 2020, MLSys. mlsys.org (2020)

    Google Scholar 

  12. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg on Non-IID data. In: 8th International Conference on Learning Representations, ICLR. OpenReview.net (2020)

    Google Scholar 

  13. Liu, C., Shum, H.: Kullback-Leibler boosting. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 587–594. IEEE Computer Society (2003)

    Google Scholar 

  14. Liu, Y., et al.: FedVision: an online visual object detection platform powered by federated learning. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI. pp. 13172–13179. AAAI Press (2020)

    Google Scholar 

  15. Mathiassen, J.R., Skavhaug, A., Bø, K.: Texture similarity measure using Kullback-Leibler divergence between gamma distributions. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 133–147. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47977-5_9

    Chapter  Google Scholar 

  16. McMahan, B., et al.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTAT, vol. 54, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  17. Qiu, H., Qiu, M., Lu, Z.: Selective encryption on ECG data in body sensor network based on supervised machine learning. Inf. Fusion 55, 59–67 (2020)

    Article  Google Scholar 

  18. Qiu, M., Gai, K., Xiong, Z.: Privacy-preserving wireless communications using bipartite matching in social big data. Future Gener. Comput. Syst. 87, 772–781 (2018)

    Article  Google Scholar 

  19. Qiu, M., Zhang, L., Ming, Z., Chen, Z., Qin, X., Yang, L.T.: Security-aware optimization for ubiquitous computing systems with SEAT graph approach. J. Comput. Syst. Sci. 79(5), 518–529 (2013)

    Article  MathSciNet  Google Scholar 

  20. Smith, V., et al.: Federated multi-task learning. In: Advances in Neural Information Processing Systems, vol. 30, pp. 4424–4434 (2017)

    Google Scholar 

  21. Wu, X., Liu, S., Zhou, Z.: Heterogeneous model reuse via optimizing multiparty multiclass margin. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML, vol. 97, pp. 6840–6849. PMLR (2019)

    Google Scholar 

  22. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017)

    Google Scholar 

  23. Yang, Q., et al.: FLOP: federated learning on medical datasets using partial networks. In: KDD 2021: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, pp. 3845–3853. ACM (2021)

    Google Scholar 

  24. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 12:1–12:19 (2019)

    Google Scholar 

  25. Zeng, D., Liang, S., Hu, X., Xu, Z.: FedLab: a flexible federated learning framework. CoRR abs/2107.11621 (2021)

    Google Scholar 

  26. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with Non-IID data. CoRR abs/1806.00582 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R &D Program of China (Grant No. 2018YFE0207600), the Key Research and Development Program of Shaanxi (Grant No. 2021ZDLGY07-05, 2019ZDLGY13-03-01), the Innovation Capability Support Program of Shaanxi(Grant No. 2020CGXNG-002), and the Fundamental Research Funds for the Central Universities (Grant No. JB210306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anxiao Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, T., Yang, S., Song, A., Li, G., Dong, X. (2022). Dual Adversarial Federated Learning on Non-IID Data. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds) Knowledge Science, Engineering and Management. KSEM 2022. Lecture Notes in Computer Science(), vol 13370. Springer, Cham. https://doi.org/10.1007/978-3-031-10989-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10989-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10988-1

  • Online ISBN: 978-3-031-10989-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics