Skip to main content

Supporting Science Areas

  • Chapter
  • First Online:
Body of Knowledge for Modeling and Simulation

Abstract

Science areas supporting modeling and simulation are overviewed in this chapter of the SCS M&S Body of Knowledge. The areas are systems science and engineering, simulation programs for differential equation solution, key features of frequently used distributions in modeling and simulation, queueing theory, characteristics of queuing systems, and statistical tests of hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wikipedia (2020, November) Systems science. https://en.wikipedia.org/wiki/Systems_science

  2. Mobus GE, Kalton MC (2015) Principles of systems science. Springer, New York

    Book  Google Scholar 

  3. von Bertalanffy L (1969) General systems theory—foundations, development, Applications. George Braziller, Inc., New York, NY

    Google Scholar 

  4. Ashby WR (1961) An introduction to cybernetics. Chapman & Hall Ltd., London, UK

    MATH  Google Scholar 

  5. Mesarovic M, Takahara Y (1975) General systems theory: mathematical foundations. Academic Press, London, UK

    MATH  Google Scholar 

  6. Klir GJ (1985) Architecture of systems problems solving. Springer, New York

    Book  MATH  Google Scholar 

  7. Mesarovic M, Takahara Y (1989) Abstract systems theory. Springer, New York, NY

    Book  MATH  Google Scholar 

  8. Wymore AW (1967) A mathematical theory of systems engineering—the elements. Wiley, New York, NY

    Google Scholar 

  9. Kalman RE, Falb PL, Arbib MA (1969) Theories of abstract automata. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  10. Wymore AW (1993) Model-based systems engineering. CRC Press LLC, Boca Raton, FL

    Google Scholar 

  11. INCOSE (2014) INCOSE system engineering vision 2025. https://www.incose.org/docs/default-source/aboutse/se-vision2025.pdf?sfvrsn=4&sfvrsn=4. Accessed July 2014

  12. INCOSE (2014) INCOSE future of systems engineering (FuSE). Available https://www.incose.org/about-systems-engineering/fuse. Accessed November 2020

  13. Zeigler BP (1984) Multifaceted modelling and discrete event simulation. Academic Press, London

    MATH  Google Scholar 

  14. Wach P, Salado A (2020) A systematic literature review on the math of model-based systems engineering (Tech. Report, VATech)

    Google Scholar 

  15. Zeigler BP, Marvin J, Cadigan JJ (2018) Systems engineering and simulation: converging toward noble causes. In: Winter simulation conference, Gothenburg, Sweden

    Google Scholar 

  16. Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice Hall PTR, Upper Saddle River, NJ, USA

    Google Scholar 

  17. Zeigler BP, Muzy A, Kofman E (2019) Theory of modeling and simulation, 3rd edn. Academic Press

    Google Scholar 

  18. Giambiasi N, Carmona J-C (2006) Generalized discrete event abstraction of continuous systems: GDEVS formalism. In: Simulation modelling practice and theory. Elsevier, vol 14, pp 47–70

    Google Scholar 

  19. Zeigler BP, Lee J (1998) Theory of quantized systems: formal basis for DEVS/HLA distributed simulation environment. In: Proceedings of SPIE, pp 49–58

    Google Scholar 

  20. Kofman E, Junco S (2001) Quantized-state systems: a DEVS approach for continuous system simulation. Trans Soc Comput Simul Int 18(3):123–132

    Google Scholar 

  21. Kofman E (2003) Quantization-based simulation of differential algebraic equation systems. Trans Soc Comput Simul Int 79(7):363–376

    Google Scholar 

  22. D’Abreu MC, Wainer GA (2003) Hybrid dynamic systems: models for continuous and hybrid system simulation. In: WSC ’03: Proceedings of the 35th conference on winter simulation, Winter Simulation Conference, pp 641–649

    Google Scholar 

  23. Cellier FE, Kofman E (2006) Continuous system simulation. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  24. Capocchi L, Federici D, Yazidi A, Henao H, Capolino G (2009) New trends and solutions for the simulation of electrical circuits using a discrete event approach. In: 2009 35th annual conference of IEEE industrial electronics, Porto, pp 4365-4370. https://doi.org/10.1109/IECON.2009.5414910

  25. Migoni G, Kofman E, Cellier F (2012) Quantization-based new integration methods for stiff ordinary differential equations. Simulation 88(4):387–407. https://doi.org/10.1177/0037549711403645

  26. Fernández J, Kofman E, Bergero F (2017) A parallel quantized state system solver for ODEs. J Parallel Distrib Comput 106:14–30

    Article  Google Scholar 

  27. Billingsley P (2012) Probability and measure, Anniversary. Wiley, Hoboken, NJ

    MATH  Google Scholar 

  28. Durrett R (2019) Probability: theory and examples, 5th edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  29. Hacking I (2001) Probability and inductive logic. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  30. Hájek A (2019) Interpretations of probability. In: Zalta E (ed) The stanford encyclopedia of philosophy. https://plato.stanford.edu/archives/fall2019/entries/probability-interpret/

  31. Tijms H (2007) Understanding probability: chance rules in everyday life. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  32. Obaidat MS, Boudriga N (2010) Fundamentals of performance evaluation of computer and telecommunications systems. Wiley

    Google Scholar 

  33. Obaidat MS, Nicopolitidis P, Zarai F (eds) Modeling and simulation of computer networks and systems: methodologies and applications. Elsevier

    Google Scholar 

  34. Balakrishnan N, Basu AP (1996) The exponential distribution: theory, methods, and applications. Gordon and Breach, New York

    Google Scholar 

  35. Ahrens JH, Deiter U (1974) Computer methods for sampling from gamma, beta, poisson and binomial distributions. Computing 12:223–246

    Article  MATH  Google Scholar 

  36. Bryc W (2005) Normal distribution: characterizations with applications. Lecture notes in statistics, vol 100, 1995 (Revised June 7, 2005)

    Google Scholar 

  37. Abramowitz M, Stegun IA (eds) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York

    Google Scholar 

  38. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Article  MATH  Google Scholar 

  39. Erlang AK (1917) Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges. Post Office Electr Eng J 10:189–197

    Google Scholar 

  40. Evans M, Hastings N, Peacock B (2000) Statistical distributions. In: Beta distribution, 3rd edn. Wiley, New York, pp 34–42

    Google Scholar 

  41. McDonald JB, Xu YJ (1995) A generalization of the beta distribution with applications. J Econometrics 66(1):133–152

    Google Scholar 

  42. Wilson EB, Hilferty MM (1931) The distribution of Chi-Square. In: Proceedings of the National Academy of Sciences, vol 17, pp 688–689

    Google Scholar 

  43. Gosset WS (1908) The probable error of a mean. Biometrika 6(1):125

    Google Scholar 

  44. Obaidat MS, Papadimitriou GI (2003) Applied system simulation: methodologies and applications. Springer

    Google Scholar 

  45. Papadimitriou GI, Sadoun B, Papazoglou C (2003) Fundamentals of system simulation. In: Obaidat MS, Papadimitriou GI (eds) Applied system simulation: methodologies and applications. Springer, pp 9–40

    Google Scholar 

  46. Erlang AK (1909) The theory of probabilities and telephone conversations. Nyt Tidsskr Matematik B 20:33–39

    Google Scholar 

  47. Banks J (2005) Discrete event system simulation. Pearson Education India

    Google Scholar 

  48. Kendall MG, Hill AB (1953) The analysis of economic time-series-part i: prices. J Roy Stat Soc Ser A (Gen) 116(1):11–34

    Google Scholar 

  49. Little JDC (1961) A proof for the queuing formula: L = λW. Oper Res 9(3):383–387. https://doi.org/10.1287/opre.9.3.383.JSTOR167570

    Article  Google Scholar 

  50. Turkman MAA, Daniel CD, Müller P (2019) Computational Bayesian statistics. Cambridge University Press, Cambridge

    Google Scholar 

  51. Greco D (2011) Significance testing in theory and practice. Br J Philos Sci 62:607–637

    Article  MATH  Google Scholar 

  52. Howson C, Urbach P (2006) Scientific reasoning: the Bayesian approach. In: Classical inference: significance tests and estimation, Chap. 5, 3rd edn. Open Court, Chicago

    Google Scholar 

  53. Sober E (2008) Evidence and evolution. In: Evidence, Chap. 1. Cambridge University Press, Cambridge

    Google Scholar 

  54. Utts J (2013) Seeing through statistics, 4th edn. Cengage Learning, Stamford, CT

    Google Scholar 

  55. Walley P (1991) Statistical reasoning with imprecise probabilities. Chapman and Hall, London

    Book  MATH  Google Scholar 

  56. Young GA, Smith RL (2010) Essentials of statistical inference. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard P. Zeigler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeigler, B.P. et al. (2023). Supporting Science Areas. In: Ören, T., Zeigler, B.P., Tolk, A. (eds) Body of Knowledge for Modeling and Simulation. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-11085-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11085-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11084-9

  • Online ISBN: 978-3-031-11085-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics