Skip to main content

History of Simulation

  • Chapter
  • First Online:
Body of Knowledge for Modeling and Simulation

Abstract

The chapter on history of simulation is foundational contribution to the SCS M&S Body of Knowledge that reviews the development of the discipline. The development of continuous and event-oriented simulation with the support of accompanying languages is the topic of one section. How simulation evolved to support experiments and experimentation is another facet of history. Finally, the evolution of simulation in analysis to support real-world decision making is evaluated in more detail. The chapter closes with a tabular view on previous studies on a M&S BoK, going back twenty years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wikipedia Count. Counting. https://en.wikipedia.org/wiki/Counting

  2. Wikipedia Abacus. Abacus. https://en.wikipedia.org/wiki/Abacus

  3. Wikipedia Timeline. Timeline of computing hardware before 1950. https://en.wikipedia.org/wiki/Timeline_of_computing_hardware_before_1950

  4. Forrester JW (1961) Industrial dynamics. Pegasus Communications, Waltham, MA, p 464

    Google Scholar 

  5. Wikipedia STELLA. Stella (Programming Language). https://en.wikipedia.org/wiki/STELLA_(programming_language)

  6. Nance RE (1996) A history of discrete-event simulation programming languages. In: Bergin TJ, Gibson RJ (eds) History of programming languages, vol. II. ACM Press and Addison Wesley Publishing Company, New York, pp 369–427

    Google Scholar 

  7. Tocher KD (1963) The art of simulation. English Universities Press, London

    Google Scholar 

  8. Hollocks BW (2008) Intelligence, innovation and integrity-KD Tocher and the dawn of simulation. J Simul 2(3):128–137

    Google Scholar 

  9. Gordon G (1961) A general purpose systems simulator. In: Proceedings of EJCC, Washington D.C. Macmillan, New York, pp 87–104

    Google Scholar 

  10. Schriber T (1974) Simulation using GPSS. Wiley. ISBN 9780471763109

    Google Scholar 

  11. Kiviat PJ (1963) GASP—A general activity simulation program. Applied Research Laboratory, US Steel Corporation, Monroeville, PA

    Google Scholar 

  12. Markowitz HM, Hausner B, Karr HW (1962) Simscript: the simulation programming language. Rand Corporation Report, Rm-3310, Cambridge, MA

    Google Scholar 

  13. Nygaard K, Dahl O (1978) The development of the SIMULA languages. ACM SIGPLAN Notices 13:245–272

    Article  Google Scholar 

  14. Buxton JN, Laski JG (1969) Control and simulation language. Comput J 5:194–199

    Article  MATH  Google Scholar 

  15. Balci O (1988) The implementation of four conceptual frameworks for simulation modeling in high-level languages. In: Proceedings of the 20th winter simulation conference. San Diego, CA, pp 287–295

    Google Scholar 

  16. Chesnevar I, Maguitman A, Prescott Loui R (2000) Logical models of argument. ACM Comput Surv 32(4):337–383

    Article  Google Scholar 

  17. Wikipedia DES. List of discrete event simulation software. https://en.wikipedia.org/wiki/List_of_discrete_event_simulation_software

  18. Ören TI, Zeigler BP (1979) Concepts for advanced simulation methodologies. Simulation 32(3):69–82. SAGE Journals Online (http://sim.sagepub.com/cgi/content/abstract/32/3/69) (One of the 50 Most-Frequently Cited Articles in SIMULATION (http://sim.sagepub.com/reports/mfc1.dtl) (6/50) as of March 1, 2010—updated monthly) Rankings are based on citations to articles on SIMULATION journal site from articles in HighWire-hosted journals (http://highwire.org/lists/allsites.dtl#A)

  19. Ören TI (1984) Model-based activities: a paradigm shift. In: Ören TI, Zeigler BP, Elzas MS (eds) Simulation and model-based methodologies: an integrative view. Springer-Verlag, Heidelberg, Germany, pp 3–40

    Chapter  Google Scholar 

  20. Ören TI, Zeigler BP, Elzas MS (eds) (1984) Simulation and model-based methodologies: an integrative view. NATO ASI series, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, p 651. http://www.site.uottawa.ca/~oren/pubs-pres/1984/pub-1984-03_GEST_NATO_ASI.pdf

  21. Ören TI, Zeigler BP (2012) System theoretic foundations of modeling and simulation: a historic perspective and the legacy of a Wayne Wymore. SIMULATION: Trans Soc Model Simul Int 88

    Google Scholar 

  22. Zeigler BP, (2003) Autobiographical retrospectives: the evolution of theory of modeling and simulation. Int J Gen Sys 32(3):221–236

    Google Scholar 

  23. Ören TI (1971a) GEST: general system theory implementor, a combined digital simulation language. Ph.D. Dissertation, p 265. University of Arizona, Tucson, AZ. ACM Portal. http://sabio.library.arizona.edu/record=b3042652~S9

  24. Ören TI (1984) GEST—a modelling and simulation language based on system theoretic concepts. In: Ören TI, Zeigler BP, Elzas MS (eds) Simulation and model-based methodologies: an integrative view. Springer-Verlag, Heidelberg, Germany, pp 281–335

    Chapter  Google Scholar 

  25. Wymore AW (1967) A mathematical theory of systems engineering: the elements. Wiley, New York

    Google Scholar 

  26. Bleha LJ (1977) An implementation of the discrete portion of the combined digital simulation language GEST. Master's Thesis, Department of Electrical Engineering, University of Ottawa, Ottawa, Ontario, Canada

    Google Scholar 

  27. Dogbey FKA (1985) GEST Translator within the knowledge-based modeling system MAGEST. Master's Thesis, Computer Science Department, University of Ottawa, Ottawa, Ontario, Canada

    Google Scholar 

  28. Zeigler BP (1976) Theory of modelling and simulation. Wiley-Interscience, New York

    MATH  Google Scholar 

  29. Wikipedia DEVS. DEVS. http://en.wikipedia.org/wiki/DEVS

  30. Whitehead AN, Russell B (1910) Principia mathematica 1 (1 ed). Cambridge University Press, Cambridge, JFM 41.0083.02

    Google Scholar 

  31. Wikipedia Bourbaki. Nicolas Boubaki. https://en.wikipedia.org/wiki/Nicolas_Bourbaki

  32. Zeigler BP, Kim TG, Praehofer H (2000) Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems, 2nd edn. Academic Press, Boston

    Google Scholar 

  33. Birtwistle GM (1973) SIMULA: its features and prospects. Norsk Regnesentral, Oslo. Bongulielmi AP, Cellier FE (1984) On the usefulness of deterministic grammars for simulation languages. ACM SIGSIM Simul Digest 15(1):14–36

    Google Scholar 

  34. Wainer GA, Mosterman PJ (2009) Discrete-event modeling and simulation: theory and applications. Taylor & Francis

    Google Scholar 

  35. Zeigler BP (1987) Hierarchical, modular discrete event models in an object oriented environment. Simul J 49(5):219–230

    Google Scholar 

  36. Wainer G. DEVS Tools. http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm

  37. Zeigler BP (1984) Multifaceted modelling and discrete event simulation. Academic Press

    MATH  Google Scholar 

  38. Zeigler BP, Muzy A (2017) From discrete event simulation to discrete event specified systems (DEVS). In: 20th World congress of the international federation of automatic control (IFAC). Toulouse, France

    Google Scholar 

  39. Zeigler BP, Muzy A, Kofman E (2018) Theory of modeling and simulation, 3rd edn. Academic Press, Elsevier

    MATH  Google Scholar 

  40. Graciano Neto VV, Paes CEB, Rodriguez LMG, Guessi M, Manzano W, Oquendo F, Nakagawa EY (2017) Stimuli-SoS: a model-based approach to derive stimuli generators for simulations of systems-of-systems software architectures. J Braz Comput Soc 23(1):13:1–13:22

    Google Scholar 

  41. Grüne-Yanoff T, Weirich P (2010) The philosophy and epistemology of simulation: a review. Simul Gaming 41(1):20–50

    Article  Google Scholar 

  42. Winsberg E (1999) Sanctioning models: the epistemology of simulation. Sci Context 12(2):275–292

    Article  Google Scholar 

  43. Montgomery DC (2017). Design and analysis of experiments. Wiley

    Google Scholar 

  44. Conway RW (1963) Some tactical problems in digital simulation. Manage Sci 10(1):47–61

    Article  Google Scholar 

  45. Nance RE, Sargent RG (2002) Perspectives on the evolution of simulation. Oper Res 50(1):161–172

    Article  MATH  Google Scholar 

  46. Kleijnen JP, Sanchez SM, Lucas TW, Cioppa TM (2005) State-of-the-art review: a user’s guide to the brave new world of designing simulation experiments. INFORMS J Comput 17(3):263–289

    Article  MATH  Google Scholar 

  47. Alexopoulos C (2006) A comprehensive review of methods for simulation output analysis. In: Proceedings of the 2006 winter simulation conference. IEEE, pp 168–178

    Google Scholar 

  48. Kleijnen JP, van Groenendaal WJ (1992) Simulation: a statistical perspective. Wiley

    MATH  Google Scholar 

  49. Kleijnen JPC (1974) Statistical techniques in simulation: Part I. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  50. Kleijnen JPC (1975) Statistical techniques in simulation: Part II. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  51. Kleijnen JPC (1975) Statistical design and analysis of simulation experiments. Informatie 17(10):531–535

    Google Scholar 

  52. Van den Bogaard W, Kleijnen JPC (1977) Minimizing waiting times using priority classes: a case study in response surface methodology. (Ter discussie FEW; Vol. 77.056). Tilburg University

    Google Scholar 

  53. Schruben LW, Margolin BH (1978) Pseudorandom number assignment in statistically designed simulation and distribution sampling experiments. J Am Stat Assoc 73(363):504–520

    Article  MATH  Google Scholar 

  54. Schruben LW, Cogliano VJ (1987) An experimental procedure for simulation response surface model identification. Commun ACM 30(8):716–730

    Article  Google Scholar 

  55. Ören TI (1981) Concepts and criteria to assess acceptability of simulation studies: a frame of reference. Simul Model Stat Comput 24(4):180–189

    Google Scholar 

  56. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 409–423

    Google Scholar 

  57. Box GE, Draper NR (1959) A basis for the selection of a response surface design. J Am Stat Assoc 54(287):622–654

    Article  MATH  Google Scholar 

  58. Balci O (1990) Guidelines for successful simulation studies. In: Proceedings of winter simulation conference (Dec. 9–12), pp 25–32

    Google Scholar 

  59. Bechhofer RE, Santner TJ, Goldsman D (1995) Design and analysis of experiments for statistical selection, screening and multiple comparisons. Wiley, New York

    Google Scholar 

  60. Goldsman D, Nelson BL (1998) Comparing systems via simulation. In: Banks J (ed) The handbook of simulation. Wiley, New York, pp 273–306

    Google Scholar 

  61. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models, vol 1. Wiley, New York

    MATH  Google Scholar 

  62. Chen VC, Tsui KL, Barton RR, Meckesheimer M (2006) A review on design, modeling and applications of computer experiments. IIE Trans 38(4):273–291

    Article  Google Scholar 

  63. Kleijnen, J.P., 2009. Factor screening in simulation experiments: review of sequential bifurcation. In: Advancing the frontiers of simulation. Springer, Boston, MA, pp 153–167

    Google Scholar 

  64. Kleijnen JP (2015) Design and analysis of simulation experiments. In: International workshop on simulation. Springer, Cham, pp 3–22

    Google Scholar 

  65. Burton A, Altman DG, Royston P, Holder RL (2006) The design of simulation studies in medical statistics. Stat Med 25:4279–4292

    Article  Google Scholar 

  66. Rahmandad H, Sterman JD (2012) Reporting guidelines for simulation-based research in social sciences. Syst Dyn Rev 28(4):396–411

    Article  Google Scholar 

  67. de França BBN, Travassos GH (2016) Experimentation with dynamic simulation models in software engineering: planning and reporting guidelines. Empiric Softw Eng 21(3):1302–1345

    Google Scholar 

  68. Nelson BL (2016) ‘Some tactical problems in digital simulation’ for the next 10 years. J Simul 10(1):2–11. https://doi.org/10.1057/jos.2015.22

    Article  Google Scholar 

  69. Roberts SD, Pegden D (2017) The history of simulation modeling. In: Chan WKV, D’Ambrogio A, Zacharewicz G, Mustafee N, Wainer G, Page E (eds) Proceedings of the 2017 Winter simulation conference. Institute of Electrical and Electronics Engineers Inc., Piscataway, New Jersey, pp 308–323

    Google Scholar 

  70. Hill RR, Miller JO (2017) A history of United States military simulation. In: Chan V, D’Ambrogio A, Zacharewics G, Mustafee M, Wainer GA, Page E (eds) Proceedings of the 2017 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, pp 346–364.

    Google Scholar 

  71. Hill RR, Tolk A (2017) A history of military computer simulation. In: Tolk A, Fowler J, Shao G, Yucesan E (eds) Advances in modeling and simulation: seminal research from 50 years of winter simulation conferences. Springer-Verlag, Berlin, Germany

    Google Scholar 

  72. Goldsman D, Nance RE, Wilson JR (2009) A brief history of simulation. In: Rossetti MD, Hill RR, Johansson B, Dunkin A, Ingalls RG (eds) Proceedings of the 2009 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, pp 310–313

    Google Scholar 

  73. Metropolis N (1987) The beginning of the Monte Carlo method. Los Alamos Sci Special Issue 1987:125–130

    Google Scholar 

  74. Pegden CD (2017) Chapter 6: The evolution of simulation languages. In: Tolk A, Fowler J, Shao G, Yucesan E (eds) Advances in modeling and simulation. Springer International Publishing, Cham, Switzerland

    Google Scholar 

  75. Barton R, Nakayama MK, Schruben L (2017) History of improving statistical efficiency. In: Chan V, D’Ambrogio A, Zacharewics G, Mustafee M, Wainer GA, Page E (eds) Proceedings of the 2017 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, pp 158–180

    Google Scholar 

  76. Robinson S (2005) Discrete-event simulation: from the pioneers to the present, what next? J Oper Res Soc 56(6):619–629. https://doi.org/10.1057/palgrave.jors.2601864

    Article  MATH  Google Scholar 

  77. SofTech Inc. (1981) Integrated computer-aided manufacturing (ICAM) architecture Part II: Volume VI—dynamics model manual (IDEF2), AFWAL-TR-81–4023. DTIC ADB062459

    Google Scholar 

  78. Harling J (1958) Simulation techniques in operations research—a review. Oper Res 6(3):307–319

    Article  MATH  Google Scholar 

  79. Lucas TW, Kelton WD, Sanchez PJ, Sanchez SM, Anderson BL (2015) Changing the paradigm: simulation, now a method of first resort. Nav Res Logist 62(4):293–303

    Article  MATH  Google Scholar 

  80. Box GEP, Hunter JS (1957) Multi-factor experimental designs for exploring response surfaces. Ann Math Stat 28(1):195–241

    Article  MATH  Google Scholar 

  81. Fu MC, Henderson SG (2017) History of seeking better solutions, aka simulation optimization. In: Chan V, D’Ambrogio A, Zacharewics G, Mustafee M, Wainer GA, Page E (eds) Proceedings of the 2017 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, pp 131–157

    Google Scholar 

  82. Sargent RG, Balci O (2017) History of verification and validation of simulation models. In: Chan V, D’Ambrogio A, Zacharewics G, Mustafee M, Wainer GA, Page E (2017) Proceedings of the 2017 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, pp 292–307

    Google Scholar 

  83. Loper M, Turnitsa C (2011) Chapter 16: History of combat modeling and distributed simulation. In: A. Tolk (ed) Engineering principles of combat modeling and distributed simulation. Wiley, New York, NY

    Google Scholar 

  84. Battilega JA, Grange JK (1984) The military applications of modeling. Air Force Institute of Technology, Wright-Patterson AFB, Ohio

    Google Scholar 

  85. Hill RR, McIntyre GA, Miller JO (2001) Applications of discrete event simulation modeling to military problems. In: Peters BA, Smith JS, Medeiros DJ, Rohrer MW (eds) Proceedings of the 2001 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, pp 780–788

    Google Scholar 

  86. Hill RR, Tolk A, Hodson DD, Millar JR (2017) Open challenges in building combat simulation systems to support test, analysis and training. In: Rabe M, Juan AA, Mustafee N, Skoogh A, Jain S, Johansson B (eds) Proceedings of the 2018 Winter simulation conference. IEEE, Piscataway, NJ, pp 3730–3741

    Google Scholar 

  87. Hodson DD, Hill RR (2014) The art and science of live, virtual and constructive simulation for test and analysis. J Defense Model Simul 11(2):77–90

    Article  Google Scholar 

  88. Shaw K, Fruhlinger J (2019) What is a digital twin and why it’s important to IoT. Networkworld. https://www.networkworld.com/article/3280225/what-is-digital-twin-technology-and-why-it-matters.html. Accessed March 2021

  89. L’Ecuyer P (2017) History of uniform random number generation. In: Chan V, D’Ambrogio A, Zacharewics G, Mustafee M, Wainer GA, Page E (eds) Proceedings of the 2017 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, pp 202–230

    Google Scholar 

  90. Kuhl ME (2017) History of random variate generation. In: Chan V, D’Ambrogio A, Zacharewics G, Mustafee M, Wainer GA, Page E (eds) Proceedings of the 2017 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, pp: 231–242

    Google Scholar 

  91. Cheng R (2017) History of input modeling. In: Chan V, D’Ambrogio A, Zacharewics G, Mustafee M, Wainer GA, Page E (eds) Proceedings of the 2017 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, pp 181–201

    Google Scholar 

  92. Alexopoulos C, Kelton WD (2017) A concise history of simulation output analysis. In: Chan V, D’Ambrogio A, Zacharewics G, Mustafee M, Wainer GA, Page E (eds) Proceedings of the 2017 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, pp. 115–130.

    Google Scholar 

  93. Brailsford SC, Carter HW, Jacobson SH (2017) Five decades of healthcare simulation. In: Chan V, D’Ambrogio A, Zacharewics G, Mustafee M, Wainer GA, Page E (eds) Proceedings of the 2017 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, pp 365–384.

    Google Scholar 

  94. McGinnis LF, Rose O (2017) History and perspective of simulation in manufacturing. In: Chan V, D’Ambrogio A, Zacharewics G, Mustafee M, Wainer GA, Page E (eds) Proceedings of the 2017 Winter simulation conference. Institute of Electrical and Electronics Engineers, Inc, Piscataway, New Jersey, pp 385–397

    Google Scholar 

  95. Sci. The SCi continuous system simulation language (CSSL). Simulation 9(6):281–303

    Google Scholar 

  96. History of Programming Languages. Wikipedia. 2021. https://en.wikipedia.org/wiki/History_of_programming_languages

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard P. Zeigler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeigler, B.P., Nicolau de França, B.B., Graciano Neto, V.V., Hill, R.R., Champagne, L.E., Ören, T. (2023). History of Simulation. In: Ören, T., Zeigler, B.P., Tolk, A. (eds) Body of Knowledge for Modeling and Simulation. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-11085-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11085-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11084-9

  • Online ISBN: 978-3-031-11085-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics