Skip to main content

Voxelmorph++

Going Beyond the Cranial Vault with Keypoint Supervision and Multi-channel Instance Optimisation

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2022)

Abstract

The majority of current research in deep learning based image registration addresses inter-patient brain registration with moderate deformation magnitudes. The recent Learn2Reg medical registration benchmark has demonstrated that single-scale U-Net architectures, such as VoxelMorph that directly employ a spatial transformer loss, often do not generalise well beyond the cranial vault and fall short of state-of-the-art performance for abdominal or intra-patient lung registration. Here, we propose two straightforward steps that greatly reduce this gap in accuracy. First, we employ keypoint self-supervision with a novel network head that predicts a discretised heatmap and robustly reduces large deformations for better robustness. Second, we replace multiple learned fine-tuning steps by a single instance optimisation with hand-crafted features and the Adam optimiser. Different to other related work, including FlowNet or PDD-Net, our approach does not require a fully discretised architecture with correlation layer. Our ablation study demonstrates the importance of keypoints in both self-supervised and unsupervised (using only a MIND metric) settings. On a multi-centric inspiration-exhale lung CT dataset, including very challenging COPD scans, our method outperforms VoxelMorph by improving nonlinear alignment by 77% compared to 19% - reaching target registration errors of 2 mm that outperform all but one learning methods published to date. Extending the method to semantic features sets new stat-of-the-art performance on inter-subject abdominal CT registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/multimodallearning/convexAdam.

  2. 2.

    http://www.mpheinrich.de/code/corrFieldWeb.zip.

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  2. Castillo, R., et al.: A reference dataset for deformable image registration spatial accuracy evaluation using the copdgene study archive. Phys. Med. Biol. 58(9), 2861 (2013)

    Article  Google Scholar 

  3. Castillo, R., et al.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54(7), 1849 (2009)

    Article  Google Scholar 

  4. Eppenhof, K.A., Lafarge, M.W., Veta, M., Pluim, J.P.: Progressively trained convolutional neural networks for deformable image registration. IEEE Trans. Med. Imaging 39(5), 1594–1604 (2019)

    Article  Google Scholar 

  5. Estienne, T., et al.: MICS: multi-steps, inverse consistency and symmetric deep learning registration network (2021)

    Google Scholar 

  6. Falk, T., et al.: U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67–70 (2019)

    Article  Google Scholar 

  7. Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. Methods Inf. Med. 46(03), 292–299 (2007)

    Article  Google Scholar 

  8. Hansen, L., Dittmer, D., Heinrich, M.P.: Learning deformable point set registration with regularized dynamic graph CNNs for large lung motion in COPD patients. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds.) GLMI 2019. LNCS, vol. 11849, pp. 53–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35817-4_7

    Chapter  Google Scholar 

  9. Hansen, L., Heinrich, M.P.: GraphregNet: deep graph regularisation networks on sparse keypoints for dense registration of 3d lung CTS. IEEE Trans. Med. Imaging 40(9), 2246–2257 (2021)

    Article  Google Scholar 

  10. Hansen, L., Heinrich, M.P.: Revisiting iterative highly efficient optimisation schemes in medical image registration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 203–212. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_20

    Chapter  Google Scholar 

  11. Heinrich, M.P.: Closing the gap between deep and conventional image registration using probabilistic dense displacement networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 50–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_6

    Chapter  Google Scholar 

  12. Heinrich, M.P., Handels, H., Simpson, I.J.A.: Estimating large lung motion in COPD patients by symmetric regularised correspondence fields. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 338–345. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_41

    Chapter  Google Scholar 

  13. Heinrich, M.P., Hansen, L.: Highly accurate and memory efficient unsupervised learning-based discrete CT registration using 2.5D displacement search. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 190–200. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_19

    Chapter  Google Scholar 

  14. Heinrich, M.P., et al.: Mind: modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 16(7), 1423–1435 (2012)

    Article  Google Scholar 

  15. Hering, A., Häger, S., Moltz, J., Lessmann, N., Heldmann, S., van Ginneken, B.: CNN-based lung CT registration with multiple anatomical constraints. Med. Image Anal., 102139 (2021)

    Google Scholar 

  16. Hering, A., et al.: Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning (2021)

    Google Scholar 

  17. Hering, A., Murphy, K., van Ginneken, B.: Learn2Reg challenge: CT lung registration - training data, May 2020. https://doi.org/10.5281/zenodo.3835682

  18. Hu, X., Kang, M., Huang, W., Scott, M.R., Wiest, R., Reyes, M.: Dual-stream pyramid registration network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 382–390. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_43

    Chapter  Google Scholar 

  19. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  20. Liu, X., Qi, C.R., Guibas, L.J.: FlowNet3d: learning scene flow in 3d point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 529–537 (2019)

    Google Scholar 

  21. Mok, T.C.W., Chung, A.C.S.: Conditional deformable image registration with convolutional neural network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 35–45. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_4

    Chapter  Google Scholar 

  22. Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21

    Chapter  Google Scholar 

  23. Murphy, K., et al.: Evaluation of registration methods on thoracic CT: the empire10 challenge. IEEE Trans. Med. Imaging 30(11), 1901–1920 (2011)

    Article  Google Scholar 

  24. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  25. Ou, Y., Sotiras, A., Paragios, N., Davatzikos, C.: DRAMMS: deformable registration via attribute matching and mutual-saliency weighting. Med. Image Anal. 15(4), 622–639 (2011)

    Article  Google Scholar 

  26. Sang, Y., Ruan, D.: Scale-adaptive deep network for deformable image registration. Med. Phys. 48(7), 3815–3826 (2021)

    Article  Google Scholar 

  27. Siebert, H., Hansen, L., Heinrich, M.P.: Fast 3d registration with accurate optimisation and little learning for learn2reg 2021 (2021)

    Google Scholar 

  28. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  29. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  30. de Vos, B.D., et al.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  31. Xu, Z., et al.: Evaluation of six registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016)

    Article  Google Scholar 

  32. Zhao, S., Lau, T., Luo, J., Eric, I., Chang, C., Xu, Y.: Unsupervised 3d end-to-end medical image registration with volume tweening network. IEEE J. Biomed. Health Inform. 24(5), 1394–1404 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias P. Heinrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heinrich, M.P., Hansen, L. (2022). Voxelmorph++. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11203-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11202-7

  • Online ISBN: 978-3-031-11203-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics