Skip to main content

Multi-magnification Networks for Deformable Image Registration on Histopathology Images

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13386))

Included in the following conference series:

Abstract

We present an end-to-end unsupervised deformable registration approach for high-resolution histopathology images with different stains. Our method comprises two sequential registration networks, where the local affine network can handle small deformations, and the non-rigid network is able to align texture details further. Both networks adopt the multi-magnification structure to improve registration accuracy. We train the proposed networks separately and evaluate them on the dataset provided by the University Hospital Frankfurt, which contains 41 multi-stained histopathology whole-slide images. By comparing with methods using the single-magnification structure, we confirm that the proposed multi-view architecture can significantly improve the performance of the local affine registration algorithm. Moreover, the proposed method achieves high registration accuracy of contents at the cell level and is potentially applicable to other medical image alignment tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costin, H.N., Rotariu, C.: Registration of multimodal medical images. Comput. Sci. J. Moldova 51(3), 231–254 (2009)

    Google Scholar 

  2. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  3. Feuerstein, M., Heibel, H., Gardiazabal, J., Navab, N., Groher, M.: Reconstruction of 3-D histology images by simultaneous deformable registration. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 582–589. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_71

    Chapter  Google Scholar 

  4. Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra Appl. 380, 107–124 (2004)

    Article  MathSciNet  Google Scholar 

  5. Fu, Y., Lei, Y., Wang, T., Curran, W.J., Liu, T., Yang, X.: Deep learning in medical image registration: a review. Phys. Med. Biol. 65(20), 20TR01 (2020)

    Google Scholar 

  6. Haskins, G., Kruger, U., Yan, P.: Deep learning in medical image registration: a survey. Mach. Vis. Appl., 1–18 (2020). https://doi.org/10.1007/s00138-020-01060-x

  7. Ho, D.J., et al.: Deep multi-magnification networks for multi-class breast cancer image segmentation. Comput. Med. Imaging Graph. 88, 101866 (2021)

    Article  Google Scholar 

  8. Lotz, J., et al.: Patch-based nonlinear image registration for gigapixel whole slide images. IEEE Trans. Biomed. Eng. 63(9), 1812–1819 (2015)

    Article  Google Scholar 

  9. Lv, J., Yang, M., Zhang, J., Wang, X.: Respiratory motion correction for free-breathing 3d abdominal MRI using CNN-based image registration: a feasibility study. Br. J. Radiol. 91(xxxx), 20170788 (2018)

    Google Scholar 

  10. Modersitzki, J.: FAIR: flexible algorithms for image registration. SIAM (2009)

    Google Scholar 

  11. Pishro-Nik, H.: Introduction to Probability, Statistics, and Random Processes. Kappa Research, Athens (2016)

    Google Scholar 

  12. Pitiot, A., Bardinet, E., Thompson, P.M., Malandain, G.: Piecewise affine registration of biological images for volume reconstruction. Med. Image Anal. 10(3), 465–483 (2006)

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  15. Schwier, M., Böhler, T., Hahn, H.K., Dahmen, U., Dirsch, O.: Registration of histological whole slide images guided by vessel structures. J. Pathol. Inform. 4(Suppl) (2013)

    Google Scholar 

  16. Simonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., Komodakis, N.: A deep metric for multimodal registration. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 10–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_2

    Chapter  Google Scholar 

  17. So, R.W., Chung, A.C.: A novel learning-based dissimilarity metric for rigid and non-rigid medical image registration by using Bhattacharyya distances. Pattern Recogn. 62, 161–174 (2017)

    Article  Google Scholar 

  18. Uzunova, H., Wilms, M., Handels, H., Ehrhardt, J.: Training CNNs for image registration from few samples with model-based data augmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 223–231. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_26

    Chapter  Google Scholar 

  19. Wodzinski, M., Müller, H.: Unsupervised learning-based nonrigid registration of high resolution histology images. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 484–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_49

    Chapter  Google Scholar 

  20. Wodzinski, M., Müller, H.: DeephistReg: unsupervised deep learning registration framework for differently stained histology samples. Comput. Methods Programs Biomed. 198, 105799 (2021)

    Article  Google Scholar 

  21. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

Download references

Acknowledgement

H.K. acknowledges support from the European Research Council (ERC) with the consolidator grant CONSYN (nr. 773196). O.C. is supported by the Alexander von Humboldt Foundation Philipp Schwartz Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Koeppl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cetin, O., Shu, Y., Flinner, N., Ziegler, P., Wild, P., Koeppl, H. (2022). Multi-magnification Networks for Deformable Image Registration on Histopathology Images. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11203-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11202-7

  • Online ISBN: 978-3-031-11203-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics