Skip to main content

Real-Time Alignment for Connectomics

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13386))

Included in the following conference series:

  • 590 Accesses

Abstract

In Connectomics, researchers are creating the brain’s wiring diagram at nanometer resolution. As part of this processing workflow, 2D electron microscopy (EM) images must be aligned to 3D volumes. However, existing alignment methods are computationally expensive and can take a long time. We hypothesize that adding biological features improve and accelerate the alignment procedure. Since especially mitochondria can be detected accurately and fast, we propose a new alignment method, MITO, that uses these structures as landmark points. With MITO, we can decrease the alignment time by 27%, and our experiments indicate a throughput of 33 Megapixels/s, which is faster than the acquisition speed of current microscopes. We can align an image volume of \(1268\times 1524\times 160\) voxels in less than 12 s. We compare our method to the following feature generators: ORB, BRISK, FAST, and FREAK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casser, V., Kang, K., Pfister, H., Haehn, D.: Fast mitochondria detection for connectomics. In: Proceedings of the Third Conference on Medical Imaging with Deep Learning, PMLR, pp. 111–120 (2020)

    Google Scholar 

  2. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  3. Leutenegge, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 International Conference on Computer Vision, pp. 2548–2555. IEEE (2011)

    Google Scholar 

  4. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517 (2012)

    Google Scholar 

  5. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  6. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34

    Chapter  Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. OpenCV modules. http://docs.opencv.org/3.1.0. Accessed 19 Apr 2017

  9. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISAPP (2009)

    Google Scholar 

  10. Khachikian, S., Emadi, M.: Applying fast & freak algorithms in selected object tracking. Int. J. Adv. Res. Electr. Electron. Instrument. Eng. 5, 5829–5839 (2016)

    Google Scholar 

  11. Phan, D., Oh, C.-M., Kim, S.-H., Na, I.-S., Lee, C.-W.: Object recognition by combining binary local invariant features and color histogram. In: 2013 2nd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 466–470 (2013)

    Google Scholar 

  12. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32, 105–119 (2010)

    Article  Google Scholar 

  13. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer-Verlag, London (2010). https://doi.org/10.1007/978-1-84882-935-0

    Book  MATH  Google Scholar 

  14. Li, X., Zhanyi, H.: Rejecting mismatches by correspondence function. Int. J. Comput. Vision 89, 1–17 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goyal, N., Hussain, Y., Yang, G.G., Haehn, D. (2022). Real-Time Alignment for Connectomics. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11203-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11202-7

  • Online ISBN: 978-3-031-11203-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics