Skip to main content

Weak Bounding Box Supervision forĀ Image Registration Networks

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13386))

Included in the following conference series:

  • 604 Accesses

Abstract

Image registration is a fundamental task in medical image analysis. Many deep learning based methods use multi-label image segmentations during training to reach the performance of conventional algorithms. But the creation of detailed annotations is very time-consuming and expert knowledge is essential. To avoid this, we propose a weakly supervised learning scheme for deformable image registration that uses bounding boxes during training. By calculating the loss function based on these bounding box labels, we are able to perform an image registration with large deformations without using densely labeled annotations. The performance of the registration of inter-patient 3D Abdominal CT images can be enhanced by approximately 10% only with little annotation effort in comparison to unsupervised learning methods. Taken into account this annotation effort, the performance also exceeds the performance of the label supervised training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Isgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128ā€“143 (2019)

    ArticleĀ  Google ScholarĀ 

  2. Eppenhof, K.A., Pluim, J.P.: Pulmonary CT registration through supervised learning with convolutional neural networks. IEEE Trans. Med. Imag. 38(5), 1097ā€“1105 (2018)

    ArticleĀ  Google ScholarĀ 

  3. Sentker, T., Madesta, F., Werner, R.: GDL-FIRE\(^\text{4D}\): deep learning-based fast 4D CT image registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-LĆ³pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 765ā€“773. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_86

  4. Hansen, L., Hering, A., Heinrich, M.P., et al.: Learn2Reg: 2020 MICCAI registration challenge (2020). https://learn2reg.grand-challenge.org

  5. Xu, Z., Lee, C.P., Heinrich, M.P., et al.: Evaluation of six registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563ā€“1572 (2016)

    ArticleĀ  Google ScholarĀ 

  6. Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 211ā€“221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21

  7. Siebert, H., Hansen, L., Heinrich, M.P.: Evaluating design choices for deep learning registration networks. In: Bildverarbeitung fĆ¼r die Medizin 2021. I, pp. 111ā€“116. Springer, Wiesbaden (2021). https://doi.org/10.1007/978-3-658-33198-6_26

  8. Rajchl, M., et al.: DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans. Med. Imag. 36(2), 674ā€“683 (2016)

    ArticleĀ  Google ScholarĀ 

  9. Hering, A., Kuckertz, S., Heldmann, S., Heinrich, M.P.: Memory-efficient 2.5 D convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart CT and MRI scans. Int. J. Comput. Assist. Radiol. Surg. 14(11), 1901ā€“1912 (2019)

    ArticleĀ  Google ScholarĀ 

  10. Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187ā€“194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_24

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Schumacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schumacher, M., Siebert, H., Bade, R., Genz, A., Heinrich, M. (2022). Weak Bounding Box Supervision forĀ Image Registration Networks. In: Hering, A., Schnabel, J., Zhang, M., Ferrante, E., Heinrich, M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2022. Lecture Notes in Computer Science, vol 13386. Springer, Cham. https://doi.org/10.1007/978-3-031-11203-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11203-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11202-7

  • Online ISBN: 978-3-031-11203-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics