Skip to main content

Pattern Mining: Current Challenges and Opportunities

  • Conference paper
  • First Online:
Database Systems for Advanced Applications. DASFAA 2022 International Workshops (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13248))

Included in the following conference series:

Abstract

Pattern mining is a key subfield of data mining that aims at developing algorithms to discover interesting patterns in databases. The discovered patterns can be used to help understanding the data and also to perform other tasks such as classification and prediction. After more than two decades of research in this field, great advances have been achieved in terms of theory, algorithms, and applications. However, there still remains many important challenges to be solved and also many unexplored areas. Based on this observations, this paper provides an overview of six key challenges that are promising topics for research and describe some interesting opportunities. Those challenges were identified by researchers from the field, and are: (1) mining patterns in complex graph data, (2) targeted pattern mining, (3) repetitive sequential pattern mining, (4) incremental, stream, and interactive pattern mining, (5) heuristic pattern mining, and (6) mining interesting patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abeysinghe, R., Cui, L.: Query-constraint-based mining of association rules for exploratory analysis of clinical datasets in the national sleep research resource. BMC Med. Inform. Decis. Making 18(2), 58 (2018)

    Article  Google Scholar 

  2. Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: The state-of-the-art of set visualization. In: Computer Graphics Forum, vol. 35, pp. 234–260. Wiley Online Library (2016)

    Google Scholar 

  3. Bhuiyan, M., Hasan, M.A.: Interactive knowledge discovery from hidden data through sampling of frequent patterns. Statist. Anal. Data Mining ASA Data Sci. J. 9(4), 205–229 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bhuiyan, M., Mukhopadhyay, S., Hasan, M.A.: Interactive pattern mining on hidden data: a sampling-based solution. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 95–104 (2012)

    Google Scholar 

  5. Chand, C., Thakkar, A., Ganatra, A.: Target oriented sequential pattern mining using recency and monetary constraints. Int. J. Comput. App. 45(10), 12–18 (2012)

    Google Scholar 

  6. Chen, M.S., Park, J.S., Yu, P.S.: Efficient data mining for path traversal patterns. IEEE Trans. Knowl. Data Eng. 10(2), 209–221 (1998)

    Article  Google Scholar 

  7. Chiang, D.A., Wang, Y.F., Lee, S.L., Lin, C.J.: Goal-oriented sequential pattern for network banking churn analysis. Expert Syst. App. 25(3), 293–302 (2003)

    Article  Google Scholar 

  8. Chueh, H.E., et al.: Mining target-oriented sequential patterns with time-intervals. Int. J. Comput. Sci. Inf. Technol. 2(4), 113–123 (2010)

    Google Scholar 

  9. Djenouri, Y., Comuzzi, M.: Combining apriori heuristic and bio-inspired algorithms for solving the frequent itemsets mining problem. Inf. Sci 420, 1–15 (2017)

    Article  Google Scholar 

  10. Djenouri, Y., Djenouri, D., Belhadi, A., Fournier-Viger, P., Lin, J.C.-W.: A new framework for metaheuristic-based frequent itemset mining. Appl. Intell. 48(12), 4775–4791 (2018). https://doi.org/10.1007/s10489-018-1245-8

    Article  MATH  Google Scholar 

  11. Dzyuba, V., Leeuwen, M.v., Nijssen, S., De Raedt, L.: Interactive learning of pattern rankings. Int. J. Artif. Intell. Tools 23(06), 1460026 (2014)

    Google Scholar 

  12. Fournier-Viger, P., Cheng, C., Cheng, Z., Lin, J.C., Selmaoui-Folcher, N.: Mining significant trend sequences in dynamic attributed graphs. Knowl. Based Syst. 182, 104797 (2019)

    Article  Google Scholar 

  13. Fournier-Viger, P., et al.: A survey of pattern mining in dynamic graphs. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10(6), e1372 (2020)

    Google Scholar 

  14. Fournier-Viger, P., Mwamikazi, E., Gueniche, T., Faghihi, U.: MEIT: memory efficient itemset tree for targeted association rule mining. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS (LNAI), vol. 8347, pp. 95–106. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53917-6_9

    Chapter  Google Scholar 

  15. Gan, W., et al.: A survey of utility-oriented pattern mining. IEEE Trans. Knowl. Data Eng. 33(4), 1306–1327 (2021)

    Article  Google Scholar 

  16. Gan, W., et al.: ProUM: projection-based utility mining on sequence data. Inf. Sci. 513, 222–240 (2020)

    Article  Google Scholar 

  17. Jentner, W., Keim, D.A.: Visualization and visual analytic techniques for patterns. In: High-Utility Pattern Mining, pp. 303–337 (2019)

    Google Scholar 

  18. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms. Knowl. Eng. Rev. 28, 75–105 (2013)

    Article  Google Scholar 

  19. Koh, J.-L., Shieh, S.-F.: An efficient approach for maintaining association rules based on adjusting FP-tree structures. In: Lee, Y.J., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 417–424. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24571-1_38

    Chapter  Google Scholar 

  20. Kubat, M., Hafez, A., Raghavan, V.V., Lekkala, J.R., Chen, W.K.: Itemset trees for targeted association querying. IEEE Trans. Knowl. Data Eng. 15(6), 1522–1534 (2003)

    Article  Google Scholar 

  21. Lam, H.T., Morchen, F., Fradkin, D., Calders, T.: Mining compressing sequential patterns. Statist. Anal. Data Mining ASA Data Sci. J. 7(1), 34–52 (2014)

    Article  MathSciNet  Google Scholar 

  22. Li, X., Li, J., Fournier-Viger, P., Nawaz, M.S., Yao, J., Lin, J.C.W.: Mining productive itemsets in dynamic databases. IEEE Access 8, 140122–140144 (2020)

    Article  Google Scholar 

  23. Lin, C.W., Hong, T.P., Lu, W.H.: The pre-FUFP algorithm for incremental mining. Expert Syst. App. 36(5), 9498–9505 (2009)

    Article  Google Scholar 

  24. Lin, J.C.W., Yang, L., Fournier-Viger, P., Hong, T.P., Voznak, M.: A binary PSO approach to mine high-utility itemsets. Soft Comput. 21(17), 5103–5121 (2017)

    Article  Google Scholar 

  25. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 55–64 (2012)

    Google Scholar 

  26. Miao, J., Wan, S., Gan, W., Sun, J., Chen, J.: TargetUM: targeted high-utility itemset querying. arXiv preprint arXiv:2111.00309 (2021)

  27. Min, F., Zhang, Z.H., Zhai, W.J., Shen, R.P.: Frequent pattern discovery with tri-partition alphabets. Inf. Sci. 507, 715–732 (2020)

    Article  MathSciNet  Google Scholar 

  28. Ouarem, O., Nouioua, F., Fournier-Viger, P.: Mining episode rules from event sequences under non-overlapping frequency. In: Fujita, H., Selamat, A., Lin, J.C.-W., Ali, M. (eds.) IEA/AIE 2021. LNCS (LNAI), vol. 12798, pp. 73–85. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79457-6_7

    Chapter  Google Scholar 

  29. Qu, W., Yan, D., Guo, G., Wang, X., Zou, L., Zhou, Y.: Parallel mining of frequent subtree patterns. In: Qin, L., et al. (eds.) SFDI/LSGDA -2020. CCIS, vol. 1281, pp. 18–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61133-0_2

    Chapter  Google Scholar 

  30. Shabtay, L., Yaari, R., Dattner, I.: A guided FP-growth algorithm for multitude-targeted mining of big data. arXiv preprint arXiv:1803.06632 (2018)

  31. Shelokar, P., Quirin, A., Cordón, O.: Three-objective subgraph mining using multiobjective evolutionary programming. Comput. Syst. Sci 80(1), 16–26 (2014)

    Article  MathSciNet  Google Scholar 

  32. Shin, S.J., Lee, D.S., Lee, W.S.: CP-tree: an adaptive synopsis structure for compressing frequent itemsets over online data streams. Inf. Sci. 278, 559–576 (2014)

    Article  MathSciNet  Google Scholar 

  33. Song, W., Huang, C.: Discovering high utility itemsets based on the artificial bee colony algorithm. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10939, pp. 3–14. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93040-4_1

    Chapter  Google Scholar 

  34. Song, W., Huang, C.: Mining high utility itemsets using bio-inspired algorithms: a diverse optimal value framework. IEEE Access 6, 19568–19582 (2018)

    Article  Google Scholar 

  35. Song, W., Zheng, C., Huang, C., Liu, L.: Heuristically mining the top-k high-utility itemsets with cross-entropy optimization. Appl. Intell. 1–16 (2021). https://doi.org/10.1007/s10489-021-02576-z

  36. Truong, T., Duong, H., Le, B., Fournier-Viger, P.: EHAUSM: an efficient algorithm for high average utility sequence mining. Inf. Sci. 515, 302–323 (2020)

    Article  MathSciNet  Google Scholar 

  37. Truong, T., Duong, H., Le, B., Fournier-Viger, P., Yun, U.: Efficient high average-utility itemset mining using novel vertical weak upper-bounds. Knowl. Based Syst. 183, 104847 (2019)

    Article  Google Scholar 

  38. Truong, T., Duong, H., Le, B., Fournier-Viger, P., Yun, U.: Frequent high minimum average utility sequence mining with constraints in dynamic databases using efficient pruning strategies. Appl. Intell. 52, 1–23 (2021)

    Google Scholar 

  39. Wu, Y., Shen, C., Jiang, H., Wu, X.: Strict pattern matching under non-overlapping condition. Sci. China Inf. Sci. 50(1), 012101 (2017)

    Google Scholar 

  40. Wu, Y., Tong, Y., Zhu, X., Wu, X.: NOSEP: nonoverlapping sequence pattern mining with gap constraints. IEEE Trans. Cybern. 48(10), 2809–2822 (2018)

    Article  Google Scholar 

  41. Wu, Y., Wang, Y., Li, Y., Zhu, X., Wu, X.: Self-adaptive nonoverlapping contrast sequential pattern mining. IEEE Trans. Cybern. (2021)

    Google Scholar 

  42. Xie, F., Wu, X., Zhu, X.: Efficient sequential pattern mining with wildcards for keyphrase extraction. Knowl. Based Syst. 115, 27–39 (2017)

    Article  Google Scholar 

  43. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from databases. In: Proceedings of the 2004 SIAM International Conference on Data Mining, pp. 482–486. SIAM (2004)

    Google Scholar 

  44. Zhang, C., Du, Z., Dai, Q., Gan, W., Weng, J., Yu, P.S.: TUSQ: targeted high-utility sequence querying. arXiv preprint arXiv:2103.16615 (2021)

  45. Zhang, L., Fu, G., Cheng, F., Qiu, J., Su, Y.: A multi-objective evolutionary approach for mining frequent and high utility itemsets. Appl. Soft Comput. 62, 974–986 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Fournier-Viger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fournier-Viger, P. et al. (2022). Pattern Mining: Current Challenges and Opportunities. In: Rage, U.K., Goyal, V., Reddy, P.K. (eds) Database Systems for Advanced Applications. DASFAA 2022 International Workshops. DASFAA 2022. Lecture Notes in Computer Science, vol 13248. Springer, Cham. https://doi.org/10.1007/978-3-031-11217-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11217-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11216-4

  • Online ISBN: 978-3-031-11217-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics