Skip to main content

Structure-Texture Decomposition-Based Enhancement Framework for Weakly Illuminated Images

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Abstract

Images acquired in poor illumination conditions are characterized by low brightness and considerable noise which constrain the performance of computer vision systems. Image enhancement thus remains crucial for improving the efficiency of such systems. To improve the visibility of low-light images, a novel image enhancement framework based on the structure-texture decomposition is proposed in this paper. Firstly, the low-light image is split into structure and texture layers using the total-variation (TV) based image decomposition approach. The structure layer is initially diffused using Perona-Malik (PM) diffusion model and the local and global luminance enhancement is incorporated in the structure-pathway using an expanded model of biological normalization for visual adaptation. In the texture pathway, the suppression of local noise and the enhancement of image details are attained with the estimation of the local energy of the texture layer and the strategy of energy weighting. Eventually, the final enhanced image of improved quality is obtained by merging the modified structure and texture layers. The effectiveness of the proposed framework is validated using no-reference image quality metrics including IL-NIQE, BRISQUE, PIQE, and BLIINDS-II. The experimental results show that the proposed method outperforms the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition-modeling, algorithms, and parameter selection. Int. J. Comput. Vision 67(1), 111–136 (2006)

    Article  Google Scholar 

  2. Celik, T., Tjahjadi, T.: Contextual and variational contrast enhancement. IEEE Trans. Image Process. 20(12), 3431–3441 (2011)

    Article  MathSciNet  Google Scholar 

  3. Chen, Z., Jiang, T., Tian, Y.: Quality assessment for comparing image enhancement algorithms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3003–3010 (2014)

    Google Scholar 

  4. Dai, Q., Pu, Y.F., Rahman, Z., Aamir, M.: Fractional-order fusion model for low-light image enhancement. Symmetry 11(4), 574 (2019)

    Article  Google Scholar 

  5. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2782–2790 (2016)

    Google Scholar 

  6. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  Google Scholar 

  7. Immerkaer, J.: Fast noise variance estimation. Comput. Vis. Image Underst. 64(2), 300–302 (1996)

    Article  Google Scholar 

  8. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  9. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  10. Land, E.H., McCann, J.J.: Lightness and retinex theory. Josa 61(1), 1–11 (1971)

    Article  Google Scholar 

  11. Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans. Image Process. 22(12), 5372–5384 (2013)

    Article  Google Scholar 

  12. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)

    Article  MathSciNet  Google Scholar 

  13. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  14. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  15. Pisano, E.D., Zong, S., Hemminger, B.M., DeLuca, M., Johnston, R.E., Muller, K., Braeuning, M.P., Pizer, S.M.: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J. Digit. Imaging 11(4), 193 (1998)

    Article  Google Scholar 

  16. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graphics Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  17. Pu, X., Yang, K., Li, Y.: A retinal adaptation model for HDR image compression. In: Yang, J., et al. (eds.) CCCV 2017. CCIS, vol. 771, pp. 37–47. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-7299-4_4

    Chapter  Google Scholar 

  18. Rahman, Z.U., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 3, pp. 1003–1006. IEEE (1996)

    Google Scholar 

  19. Rivera, A.R., Ryu, B., Chae, O.: Content-aware dark image enhancement through channel division. IEEE Trans. Image Process. 21(9), 3967–3980 (2012)

    Article  MathSciNet  Google Scholar 

  20. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  21. Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)

    Article  MathSciNet  Google Scholar 

  22. Venkatanath, N., Praneeth, D., Bh, M.C., Channappayya, S.S., Medasani, S.S.: Blind image quality evaluation using perception based features. In: 2015 Twenty First National Conference on Communications (NCC), pp. 1–6. IEEE (2015)

    Google Scholar 

  23. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  24. Yang, K.F., Zhang, X.S., Li, Y.J.: A biological vision inspired framework for image enhancement in poor visibility conditions. IEEE Trans. Image Process. 29, 1493–1506 (2019)

    Article  Google Scholar 

  25. Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 24(8), 2579–2591 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

Portions of the research in this paper use the PKU-EAQA dataset collected under the sponsorship of the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Haritha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haritha, K.M., Sreeni, K.G., Zacharias, J., Jeena, R.S. (2022). Structure-Texture Decomposition-Based Enhancement Framework for Weakly Illuminated Images. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1567. Springer, Cham. https://doi.org/10.1007/978-3-031-11346-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11346-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11345-1

  • Online ISBN: 978-3-031-11346-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics