Skip to main content

Polarimetric SAR Classification: Fast Learning with k-Maximum Likelihood Estimator

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Abstract

Classification of polarimetric synthetic aperture radar (SAR) images into different ground covers becomes challenging when the terrain under consideration is heterogeneous in nature. A finite mixture model-based Wishart mixture model (WMM) classifier can efficiently incorporate heterogeneity of terrain using multiple Wishart components. The expectation-maximization (EM) is the most widely used algorithm for learning parameters of such statistical models. However, the convergence of the EM algorithm is very slow. Moreover, the information contained in the polarimetric SAR images is in complex numbers and the size of the data is often very large. Therefore, they incur a large amount of computational overhead. The training of the classifier becomes very slow due to these reasons. In this paper, a k-maximum likelihood estimator (k-MLE) algorithm is employed for learning of the parameters in WMM classifier. As k-MLE is an iterative process, different algorithm initialization approaches such as random, global K-means, and k-MLE++ are analyzed. The algorithm is compared with the traditional EM algorithm in terms of classification accuracy and computational time. The experiments are performed on six different full polarimetric SAR datasets. The results show that the classification accuracy using k-MLE is comparable to the traditional EM algorithm while being more computationally efficient. The initialization using k-MLE++ results in better modeling compared to random and global K-means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahishali, M., Kiranyaz, S., Ince, T., Gabbouj, M.: Classification of polarimetric SAR images using compact convolutional neural networks. GISci. Remote Sens. 58(1), 28–47 (2021). https://doi.org/10.1080/15481603.2020.1853948

    Article  Google Scholar 

  2. ASF: Dataset: AIRSAR, NASA 1991. https://search.asf.alaska.edu/. Accessed ASF DAAC 09 April 2021

  3. Couvreur, C.: The EM Algorithm: A Guided Tour, pp. 209–222. Birkhäuser Boston, Boston (1997). https://doi.org/10.1007/978-1-4612-1996-5_12

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Freitas, C.C., Frery, A.C., Correia, A.H.: The polarimetric G distribution for SAR data analysis. Environmetrics Official J. Int. Environmetrics Soc. 16(1), 13–31 (2005)

    MathSciNet  Google Scholar 

  6. Gadhiya, T., Roy, A.K.: Superpixel-driven optimized Wishart network for fast polsar image classification using global \({k}\)-means algorithm. IEEE Trans. Geosci. Remote Sens. 58(1), 97–109 (2020). https://doi.org/10.1109/TGRS.2019.2933483

    Article  Google Scholar 

  7. Gao, W., Yang, J., Ma, W.: Land cover classification for polarimetric SAR images based on mixture models. Remote Sens. 6(5), 3770–3790 (2014). https://doi.org/10.3390/rs6053770

    Article  Google Scholar 

  8. Hua, W., Xie, W., Jin, X.: Three-channel convolutional neural network for polarimetric SAR images classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13, 4895–4907 (2020). https://doi.org/10.1109/JSTARS.2020.3018161

    Article  Google Scholar 

  9. IETR: San Francisco polarimetric SAR datasets (2019). https://ietr-lab.univ-rennes1.fr/polsarpro-bio/san-francisco/

  10. Lee, J.S., Grunes, M.R., Kwok, R.: Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution. Int. J. Remote Sens. 15(11), 2299–2311 (1994). https://doi.org/10.1080/01431169408954244

    Article  Google Scholar 

  11. Lee, J.S., Pottier, E.: Polarimetric Radar Imaging: From Basics to Applications. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  12. Lee, J.S., Schuler, D.L., Lang, R.H., Ranson, K.J.: K-distribution for multi-look processed polarimetric SAR imagery. In: Proceedings of IGARSS 1994 - 1994 IEEE International Geoscience and Remote Sensing Symposium, vol. 4, pp. 2179–2181 (1994). https://doi.org/10.1109/IGARSS.1994.399685

  13. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recogn. 36(2), 451–461 (2003)

    Article  Google Scholar 

  14. Liu, H., Luo, R., Shang, F., Meng, X., Gou, S., Hou, B.: Semi-supervised deep metric learning networks for classification of polarimetric SAR data. Remote Sens. 12(10) (2020). https://www.mdpi.com/2072-4292/12/10/1593

  15. Liu, X., Jiao, L., Liu, F.: PoLSF: PoLSAR image dataset on San Francisco. arXiv preprint arXiv:1912.07259 (2019)

  16. Nielsen, F.: \(k\)-MLE: a fast algorithm for learning statistical mixture models. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 869–872 (2012). https://doi.org/10.1109/ICASSP.2012.6288022

  17. Saint-Jean, C., Nielsen, F.: Hartigan’s method for \(k\)-MLE: mixture modeling with Wishart distributions and its application to motion retrieval. In: Nielsen, F. (ed.) Geometric Theory of Information. SCT, pp. 301–330. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05317-2_11

    Chapter  Google Scholar 

  18. Schwander, O., Nielsen, F.: Fast learning of gamma mixture models with \(k\)-MLE. In: Hancock, E., Pelillo, M. (eds.) Similarity-Based Pattern Recognition, pp. 235–249. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Schwander, O., Schutz, A.J., Nielsen, F., Berthoumieu, Y.: k-MLE for mixtures of generalized gaussians. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 2825–2828 (2012)

    Google Scholar 

  20. STEP-ESA: Polsarpro v6.0 (biomass edition) toolbox. https://step.esa.int/main/toolboxes/polsarpro-v6-0-biomass-edition-toolbox/

  21. The Scikit-YB developers: Elbow method - yellowbrick v1.2.1 documentation. https://www.scikit-yb.org/en/latest/api/cluster/elbow.html

  22. Yang, W., Yang, X., Yan, T., Song, H., Xia, G.S.: Region-based change detection for polarimetric SAR images using Wishart mixture models. IEEE Trans. Geosci. Remote Sens. 54(11), 6746–6756 (2016). https://doi.org/10.1109/TGRS.2016.2590145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilam Chaudhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaudhari, N., Mitra, S.K., Mandal, S., Chirakkal, S., Putrevu, D., Misra, A. (2022). Polarimetric SAR Classification: Fast Learning with k-Maximum Likelihood Estimator. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1567. Springer, Cham. https://doi.org/10.1007/978-3-031-11346-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11346-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11345-1

  • Online ISBN: 978-3-031-11346-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics