Abstract
Prostate cancer is one of the most dangerous cancers that affect men around the world. Pathologists use a variety of approaches to grade prostate cancer. Among them, microscopic examination of biopsy tissue images is the most efficient method. A timely and accurate diagnosis plays a critical role in preventing cancer from progressing. The recent achievement of deep learning (DL), notably in the convolution neural networks (CNN), is exceptional in medicine. In this study, we have investigated and compared the performance of the state-of-the-art CNN models, namely MobileNet-V2, ResNet50, DenseNet121, DenseNet169, VGG16, VGG19, Xception, InceptionV3, InceptionResNet-V2, and EfficientNet-B7 for prostate cancer grading using histopathological images. The performance of pre-trained CNNs has been evaluated on the publicly available Prostate cancer grade assessment (PANDA) dataset. On this multi-class classification problem, the EfficientNet-B7 model has achieved the highest classification accuracy of 90.90%. With such a high rate of success, the EfficientNet-B7 model may be a useful method for pathologists in determining the stage of prostate cancer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492
Rawla, P.: Epidemiology of prostate cancer. World J. Oncol. 10(2), 63 (2019). https://doi.org/10.14740/wjon1191
Gleason, D.F.: Classification of prostatic carcinomas. Cancer Chemother. Rep. 50, 125–128 (1966)
Epstein, J.I., Egevad, L., Amin, M.B., Delahunt, B., Srigley, J.R., Humphrey, P.A.: The 2014 international society of urological pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am. J. Surg. pathol. 40(2), 244–252 (2016). https://doi.org/10.1097/PAS.0000000000000530
Billis, A., Guimaraes, M.S., Freitas, L.L., Meirelles, L., Magna, L.A., Ferreira, U.: The impact of the 2005 international society of urological pathology consensus conference on standard Gleason grading of prostatic carcinoma in needle biopsies. J. Urol. 180(2), 548–553 (2008). https://doi.org/10.1016/j.juro.2008.04.018
Gour, M., Jain, S., Agrawal, R.: DeepRNNetSeg: deep residual neural network for nuclei segmentation on breast cancer histopathological images. In: Nain, N., Vipparthi, S.K., Raman, B. (eds.) CVIP 2019. CCIS, vol. 1148, pp. 243–253. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4018-9_23
Gour, M., Jain, S., Sunil Kumar, T.: Residual learning based CNN for breast cancer histopathological image classification. Int. J. Imaging Syst. Technol. 30(3), 621–635 (2020). https://doi.org/10.1002/ima.22403
Gour, M., Jain, S.: Stacked convolutional neural network for diagnosis of COVID-19 disease from X-ray images (2020). arXiv preprint arXiv:2006.13817
Tabesh, A., et al.: Multifeature prostate cancer diagnosis and Gleason grading of histological images. IEEE Trans. Med. Imaging 26(10), 1366–1378 (2007). https://doi.org/10.1109/TMI.2007.898536
Källén, H., Molin, J., Heyden, A., Lundström, C., Åström, K.: Towards grading Gleason score using generically trained deep convolutional neural networks. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1163–1167. IEEE (2016, April). https://doi.org/10.1109/ISBI.2016.7493473
Nguyen, K., Jain, A.K., Sabata, B.: Prostate cancer detection: fusion of cytological and textural features. J. Pathol. Inf. 2, 3 (2011). https://doi.org/10.4103/2153-3539.92030
Rezaeilouyeh, H., Mollahosseini, A., Mahoor, M.H.: Microscopic medical image classification framework via deep learning and shearlet transform. J. Med. Imaging 3(4), 044501 (2016). https://doi.org/10.1117/1.JMI.3.4.044501
Zhou, N., Fedorov, A., Fennessy, F., Kikinis, R., Gao, Y.: Large scale digital prostate pathology image analysis combining feature extraction and deep neural network (2017). arXiv preprint arXiv:1705.02678
Nguyen, K., Sabata, B., Jain, A.K.: Prostate cancer grading: gland segmentation and structural features. Pattern Recogn. Lett. 33(7), 951–961 (2012). https://doi.org/10.1016/j.patrec.2011.10.001
Diamond, J., Anderson, N.H., Bartels, P.H., Montironi, R., Hamilton, P.W.: The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Hum. Pathol. 35(9), 1121–1131 (2004)
Arvaniti, E., Fricker, K.S., Moret, M., Rupp, N., Hermanns, T., Fankhauser, C., Claassen, M.: Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci. Rep. 8(1), 1–11 (2018)
Huang, J., Tang, X.: A fast video inpainting algorithm based on state matching. In: 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 114–118. IEEE (October 2016). https://doi.org/10.1109/CISP-BMEI.2016.7852692
Khani, A.A., Jahromi, S.A.F., Shahreza, H.O., Behroozi, H., Baghshah, M.S.: Towards automatic prostate Gleason grading via deep convolutional neural networks. In: 2019 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–6. IEEE (December 2019). https://doi.org/10.1109/ICSPIS48872.2019.9066019
Kelly, H., Chikandiwa, A., Vilches, L.A., Palefsky, J.M., de Sanjose, S., Mayaud, P.: Association of antiretroviral therapy with anal high-risk human papillomavirus, anal intraepithelial neoplasia, and anal cancer in people living with HIV: a systematic review and meta-analysis. Lancet HIV, 7(4), e262–e278 (2020). https://doi.org/10.1016/S2352-3018(19)30434-5
Nir, G., et al.: Automatic grading of prostate cancer in digitized histopathology images: learning from multiple experts. Med. Image Anal. 50, 167–180 (2018). https://doi.org/10.1016/j.media.2018.09.005
Tsehay, Y., et al.: Biopsy-guided learning with deep convolutional neural networks for prostate Cancer detection on multiparametric MRI. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 642–645. IEEE (April 2017). https://doi.org/10.1109/ISBI.2017.7950602
Karimi, D., Nir, G., Fazli, L., Black, P.C., Goldenberg, L., Salcudean, S.E.: Deep learning-based Gleason grading of prostate cancer from histopathology images-role of multiscale decision aggregation and data augmentation. IEEE J. Biomed. Health Inf. 24(5), 1413–1426 (2019). https://doi.org/10.1109/JBHI.2019.2944643
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Liu, S., Deng, W.: Very deep convolutional neural network based image classification using small training sample size. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 730–734. IEEE (November 2015). https://doi.org/10.1109/ACPR.2015.7486599
Chollet, F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Sae-Lim, W., Wettayaprasit, W., Aiyarak, P.: Convolutional neural networks using mobilenet for skin lesion classification. In: 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 242–247. IEEE (July 2019). https://doi.org/10.1109/JCSSE.2019.8864155
Tan, M., Le QV, E.: (1905) Rethinking Model Scaling for Convolutional Neural Networks (2019)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
Kingma, D.P., Ba, J.A.: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980
Prostate cANcer graDe Assessment (PANDA) Challenge. https://www.kaggle.com/c/prostate-cancer-grade-assessment/data/ (2021). Accessed 20 April 2021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gour, M., Jain, S., Shankar, U. (2022). Application of Deep Learning Techniques for Prostate Cancer Grading Using Histopathological Images. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1567. Springer, Cham. https://doi.org/10.1007/978-3-031-11346-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-11346-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11345-1
Online ISBN: 978-3-031-11346-8
eBook Packages: Computer ScienceComputer Science (R0)