Skip to main content

Application of Deep Learning Techniques for Prostate Cancer Grading Using Histopathological Images

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Abstract

Prostate cancer is one of the most dangerous cancers that affect men around the world. Pathologists use a variety of approaches to grade prostate cancer. Among them, microscopic examination of biopsy tissue images is the most efficient method. A timely and accurate diagnosis plays a critical role in preventing cancer from progressing. The recent achievement of deep learning (DL), notably in the convolution neural networks (CNN), is exceptional in medicine. In this study, we have investigated and compared the performance of the state-of-the-art CNN models, namely MobileNet-V2, ResNet50, DenseNet121, DenseNet169, VGG16, VGG19, Xception, InceptionV3, InceptionResNet-V2, and EfficientNet-B7 for prostate cancer grading using histopathological images. The performance of pre-trained CNNs has been evaluated on the publicly available Prostate cancer grade assessment (PANDA) dataset. On this multi-class classification problem, the EfficientNet-B7 model has achieved the highest classification accuracy of 90.90%. With such a high rate of success, the EfficientNet-B7 model may be a useful method for pathologists in determining the stage of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492

  2. Rawla, P.: Epidemiology of prostate cancer. World J. Oncol. 10(2), 63 (2019). https://doi.org/10.14740/wjon1191

    Article  Google Scholar 

  3. Gleason, D.F.: Classification of prostatic carcinomas. Cancer Chemother. Rep. 50, 125–128 (1966)

    Google Scholar 

  4. Epstein, J.I., Egevad, L., Amin, M.B., Delahunt, B., Srigley, J.R., Humphrey, P.A.: The 2014 international society of urological pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am. J. Surg. pathol. 40(2), 244–252 (2016). https://doi.org/10.1097/PAS.0000000000000530

    Article  Google Scholar 

  5. Billis, A., Guimaraes, M.S., Freitas, L.L., Meirelles, L., Magna, L.A., Ferreira, U.: The impact of the 2005 international society of urological pathology consensus conference on standard Gleason grading of prostatic carcinoma in needle biopsies. J. Urol. 180(2), 548–553 (2008). https://doi.org/10.1016/j.juro.2008.04.018

    Article  Google Scholar 

  6. Gour, M., Jain, S., Agrawal, R.: DeepRNNetSeg: deep residual neural network for nuclei segmentation on breast cancer histopathological images. In: Nain, N., Vipparthi, S.K., Raman, B. (eds.) CVIP 2019. CCIS, vol. 1148, pp. 243–253. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4018-9_23

    Chapter  Google Scholar 

  7. Gour, M., Jain, S., Sunil Kumar, T.: Residual learning based CNN for breast cancer histopathological image classification. Int. J. Imaging Syst. Technol. 30(3), 621–635 (2020). https://doi.org/10.1002/ima.22403

    Article  Google Scholar 

  8. Gour, M., Jain, S.: Stacked convolutional neural network for diagnosis of COVID-19 disease from X-ray images (2020). arXiv preprint arXiv:2006.13817

  9. Tabesh, A., et al.: Multifeature prostate cancer diagnosis and Gleason grading of histological images. IEEE Trans. Med. Imaging 26(10), 1366–1378 (2007). https://doi.org/10.1109/TMI.2007.898536

    Article  Google Scholar 

  10. Källén, H., Molin, J., Heyden, A., Lundström, C., Åström, K.: Towards grading Gleason score using generically trained deep convolutional neural networks. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1163–1167. IEEE (2016, April). https://doi.org/10.1109/ISBI.2016.7493473

  11. Nguyen, K., Jain, A.K., Sabata, B.: Prostate cancer detection: fusion of cytological and textural features. J. Pathol. Inf. 2, 3 (2011). https://doi.org/10.4103/2153-3539.92030

    Article  Google Scholar 

  12. Rezaeilouyeh, H., Mollahosseini, A., Mahoor, M.H.: Microscopic medical image classification framework via deep learning and shearlet transform. J. Med. Imaging 3(4), 044501 (2016). https://doi.org/10.1117/1.JMI.3.4.044501

    Article  Google Scholar 

  13. Zhou, N., Fedorov, A., Fennessy, F., Kikinis, R., Gao, Y.: Large scale digital prostate pathology image analysis combining feature extraction and deep neural network (2017). arXiv preprint arXiv:1705.02678

  14. Nguyen, K., Sabata, B., Jain, A.K.: Prostate cancer grading: gland segmentation and structural features. Pattern Recogn. Lett. 33(7), 951–961 (2012). https://doi.org/10.1016/j.patrec.2011.10.001

    Article  Google Scholar 

  15. Diamond, J., Anderson, N.H., Bartels, P.H., Montironi, R., Hamilton, P.W.: The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Hum. Pathol. 35(9), 1121–1131 (2004)

    Article  Google Scholar 

  16. Arvaniti, E., Fricker, K.S., Moret, M., Rupp, N., Hermanns, T., Fankhauser, C., Claassen, M.: Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci. Rep. 8(1), 1–11 (2018)

    Article  Google Scholar 

  17. Huang, J., Tang, X.: A fast video inpainting algorithm based on state matching. In: 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 114–118. IEEE (October 2016). https://doi.org/10.1109/CISP-BMEI.2016.7852692

  18. Khani, A.A., Jahromi, S.A.F., Shahreza, H.O., Behroozi, H., Baghshah, M.S.: Towards automatic prostate Gleason grading via deep convolutional neural networks. In: 2019 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), pp. 1–6. IEEE (December 2019). https://doi.org/10.1109/ICSPIS48872.2019.9066019

  19. Kelly, H., Chikandiwa, A., Vilches, L.A., Palefsky, J.M., de Sanjose, S., Mayaud, P.: Association of antiretroviral therapy with anal high-risk human papillomavirus, anal intraepithelial neoplasia, and anal cancer in people living with HIV: a systematic review and meta-analysis. Lancet HIV, 7(4), e262–e278 (2020). https://doi.org/10.1016/S2352-3018(19)30434-5

  20. Nir, G., et al.: Automatic grading of prostate cancer in digitized histopathology images: learning from multiple experts. Med. Image Anal. 50, 167–180 (2018). https://doi.org/10.1016/j.media.2018.09.005

    Article  Google Scholar 

  21. Tsehay, Y., et al.: Biopsy-guided learning with deep convolutional neural networks for prostate Cancer detection on multiparametric MRI. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 642–645. IEEE (April 2017). https://doi.org/10.1109/ISBI.2017.7950602

  22. Karimi, D., Nir, G., Fazli, L., Black, P.C., Goldenberg, L., Salcudean, S.E.: Deep learning-based Gleason grading of prostate cancer from histopathology images-role of multiscale decision aggregation and data augmentation. IEEE J. Biomed. Health Inf. 24(5), 1413–1426 (2019). https://doi.org/10.1109/JBHI.2019.2944643

    Article  Google Scholar 

  23. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  25. Liu, S., Deng, W.: Very deep convolutional neural network based image classification using small training sample size. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 730–734. IEEE (November 2015). https://doi.org/10.1109/ACPR.2015.7486599

  26. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  27. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  28. Sae-Lim, W., Wettayaprasit, W., Aiyarak, P.: Convolutional neural networks using mobilenet for skin lesion classification. In: 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 242–247. IEEE (July 2019). https://doi.org/10.1109/JCSSE.2019.8864155

  29. Tan, M., Le QV, E.: (1905) Rethinking Model Scaling for Convolutional Neural Networks (2019)

    Google Scholar 

  30. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  31. Kingma, D.P., Ba, J.A.: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  32. Prostate cANcer graDe Assessment (PANDA) Challenge. https://www.kaggle.com/c/prostate-cancer-grade-assessment/data/ (2021). Accessed 20 April 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Gour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gour, M., Jain, S., Shankar, U. (2022). Application of Deep Learning Techniques for Prostate Cancer Grading Using Histopathological Images. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1567. Springer, Cham. https://doi.org/10.1007/978-3-031-11346-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11346-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11345-1

  • Online ISBN: 978-3-031-11346-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics