Skip to main content

Retinal Image Quality Assessment Using Sharpness and Connected Components

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Abstract

Mobile application based diagnosis has become an aid nowadays. For better diagnosis, the quality of image needs to be good. Automatic assessment of images will help the ophthalmologists to focus more on the diagnosis. To assist the experts, an automated retinal image quality assessment method has been proposed. The proposed method make use of the features extracted from the sharpness and connected components of the fundus image. In particular, the image is divided into patches and the features are extracted. Those extracted features are used to train a machine learning model. The proposed model has achieved comparable results on the private dataset and outperformed the existing methods on public datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Hamid, L., El-Rafei, A., Michelson, G.: No-reference quality index for color retinal images. Comput. Biol. Med. 90, 68–75 (2017)

    Article  Google Scholar 

  2. Abràmoff, M., Kay, C.N.: Image processing. In: Ryan, S.J., et al.: (eds.) Retina (5th Edn.), Chap. 6, pp. 151–176. W.B. Saunders, London (2013)

    Google Scholar 

  3. Amin, A., Fischer, S.: A document skew detection method using the Hough transform. Pattern Anal. Appl. 3(3), 243–253 (2000)

    Article  Google Scholar 

  4. Bartling, H., Wanger, P., Martin, L.: Automated quality evaluation of digital fundus photographs. Acta Ophthalmol. 87(6), 643–647 (2009)

    Article  Google Scholar 

  5. Bolelli, F., Cancilla, M., Grana, C.: Two more strategies to speed up connected components labeling algorithms. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10485, pp. 48–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68548-9_5

  6. Bourouis, A., Feham, M., Hossain, M.A., Zhang, L.: An intelligent mobile based decision support system for retinal disease diagnosis. Decis. Supp. Syst. 59, 341–350 (2014)

    Article  Google Scholar 

  7. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  8. Dillencourt, M.B., Samet, H., Tamminen, M.: A general approach to connected-component labeling for arbitrary image representations. J. ACM 39(2), 253–280 (1992)

    Article  MathSciNet  Google Scholar 

  9. Fleming, A.D., Philip, S., Goatman, K.A., Olson, J.A., Sharp, P.F.: Automated assessment of diabetic retinal image quality based on clarity and field definition. Invest. Ophthalmol. Vis. Sci. 47(3), 1120–1125 (2006)

    Article  Google Scholar 

  10. Fleming, A.D., Philip, S., Goatman, K.A., Sharp, P.F., Olson, J.A.: Automated clarity assessment of retinal images using regionally based structural and statistical measures. Med. Eng. Phys. 34(7), 849–859 (2012)

    Article  Google Scholar 

  11. Fu, H., et al.: Evaluation of retinal image quality assessment networks in different color-spaces. In: Shen, D., Liu, et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_6

  12. Giancardo, L., Meriaudeau, F., Karnowski, T.P., Chaum, E., Tobin, K.: Quality assessment of retinal fundus images using elliptical local vessel density. New Develop. Biomed. Eng. 11 (2010)

    Google Scholar 

  13. Grana, C., Borghesani, D., Cucchiara, R.: Optimized block-based connected components labeling with decision trees. IEEE Trans. Image Processing 19(6), 1596–1609 (2010)

    Article  MathSciNet  Google Scholar 

  14. Karlsson, R.A., Jonsson, B.A., Hardarson, S.H., Olafsdottir, O.B., Halldorsson, G.H., Stefansson, E.: Automatic fundus image quality assessment on a continuous scale. Comput. Biol. Med. 129, 104114 (2021)

    Article  Google Scholar 

  15. Kim, J.H., Kim, K.K., Suen, C.Y.: An HMM-MLP hybrid model for cursive script recognition. Pattern Anal. Appl. 3(4), 314–324 (2000)

    Article  MathSciNet  Google Scholar 

  16. Lee, S.C., Wang, Y.: Automatic retinal image quality assessment and enhancement. In: Medical Imaging 1999: Image Processing, vol. 3661, pp. 1581–1590. International Society for Optics and Photonics (1999)

    Google Scholar 

  17. Liu, H., Zhang, N., Jin, S., Xu, D., Gao, W.: Small sample color fundus image quality assessment based on GCforest. Multim. Tools Appl. 80(11), 17441–17459 (2020). https://doi.org/10.1007/s11042-020-09362-y

    Article  Google Scholar 

  18. Luckner, M., Topolski, B., Mazurek, M.: Application of XGBoost algorithm in fingerprinting localisation task. In: Saeed, K., Homenda, W.ł., Chaki, R. (eds.) CISIM 2017. LNCS, vol. 10244, pp. 661–671. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59105-6_57

  19. Mahapatra, D., Roy, P.K., Sedai, S., Garnavi, R.: A CNN based neurobiology inspired approach for retinal image quality assessment. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1304–1307. IEEE (2016)

    Google Scholar 

  20. Paulus, J., Meier, J., Bock, R., Hornegger, J., Michelson, G.: Automated quality assessment of retinal fundus photos. Int. J. Comput. Assist. Radiol. Surg. 5(6), 557–564 (2010)

    Article  Google Scholar 

  21. Pérez, A.D., Perdomo, O., González, F.A.: A lightweight deep learning model for mobile eye fundus image quality assessment. In: 15th International Symposium on Medical Information Processing and Analysis. vol. 11330, p. 113300K. International Society for Optics and Photonics (2020)

    Google Scholar 

  22. Raj, A., Shah, N.A., Tiwari, A.K., Martini, M.G.: Multivariate regression-based convolutional neural network model for fundus image quality assessment. IEEE Access 8, 57810–57821 (2020)

    Article  Google Scholar 

  23. Raj, A., Tiwari, A.K., Martini, M.G.: Fundus image quality assessment: survey, challenges, and future scope. IET Image Processing 13(8), 1211–1224 (2019)

    Article  Google Scholar 

  24. Samet, H., Tamminen, M.: Efficient component labeling of images of arbitrary dimension represented by linear bintrees. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 579–586 (1988)

    Article  Google Scholar 

  25. Sevik, U., Kose, C., Berber, T., Erdol, H.: Identification of suitable fundus images using automated quality assessment methods. J. Biomed. Opt. 19(4), 046006 (2014)

    Article  Google Scholar 

  26. Shao, F., Yang, Y., Jiang, Q., Jiang, G., Ho, Y.S.: Automated quality assessment of fundus images via analysis of illumination, naturalness and structure. IEEE Access 6, 806–817 (2017)

    Article  Google Scholar 

  27. Sisodia, D.S., Nair, S., Khobragade, P.: Diabetic retinal fundus images: preprocessing and feature extraction for early detection of diabetic retinopathy. Biomed. Pharmacol. J. 10(2), 615–626 (2017)

    Article  Google Scholar 

  28. Suri, J.S., Singh, S., Reden, L.: Computer vision and pattern recognition techniques for 2-d and 3-d mr cerebral cortical segmentation (part i): a state-of-the-art review. Pattern Anal. Appl. 5(1), 46–76 (2002)

    Article  MathSciNet  Google Scholar 

  29. Wang, S., Jin, K., Lu, H., Cheng, C., Ye, J., Qian, D.: Human visual system-based fundus image quality assessment of portable fundus camera photographs. IEEE Trans. Med. Imaging 35(4), 1046–1055 (2015)

    Article  Google Scholar 

  30. Welikala, R., et al.: Automated retinal image quality assessment on the UK biobank dataset for epidemiological studies. Comput. Biol. Med. 71, 67–76 (2016)

    Article  Google Scholar 

  31. Wu, K., Otoo, E., Suzuki, K.: Optimizing two-pass connected-component labeling algorithms. Pattern Anal. Appl. 12(2), 117–135 (2009)

    Article  MathSciNet  Google Scholar 

  32. Yao, Z., Zhang, Z., Xu, L.Q., Fan, Q., Xu, L.: Generic features for fundus image quality evaluation. In: 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6 (2016)

    Google Scholar 

  33. Yao, Z., Zhang, Z., Xu, L.Q., Fan, Q., Xu, L.: Generic features for fundus image quality evaluation. In: 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6. IEEE (2016)

    Google Scholar 

  34. Yapa, R.D., Koichi, H.: A connected component labeling algorithm for grayscale images and application of the algorithm on mammograms. In: Proceedings of the 2007 ACM symposium on Applied computing, pp. 146–152 (2007)

    Google Scholar 

  35. Yu, F., Sun, J., Li, A., Cheng, J., Wan, C., Liu, J.: Image quality classification for DR screening using deep learning. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 664–667. IEEE (2017)

    Google Scholar 

  36. Yu, H., Agurto, C., Barriga, S., Nemeth, S.C., Soliz, P., Zamora, G.: Automated image quality evaluation of retinal fundus photographs in diabetic retinopathy screening. In: 2012 IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 125–128. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kiruthika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiruthika, S., Masilamani, V. (2022). Retinal Image Quality Assessment Using Sharpness and Connected Components. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics