Abstract
Forgery is the process of fabricating, transforming or imitating writings, objects, or documents. It is a white-collar crime. Investigating forged cheques, wills or modified documents frequently involves analysing the inks used in these write-ups. Hyperspectral imaging can be used to identify various types of materials. This technology paired with powerful classifiers can be implemented to identify the various types of inks used in a document. This study leveraged the UWA Writing Ink Hyperspectral Images database (WIHSI) to carry forth ink detection by applying three different dimension reduction algorithms namely: Principal Component Analysis, Factor Analysis, and Independent Component Analysis. After which, a comparative study was carried forth between different processes applied in this study and existing methods. In essence, this work aims to integrate the use of hyperspectral imagery with machine learning and dimension reduction to detect document forgery.
V. Rastogi and S. Srivastava—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World of forensic science. encyclopedia.com, 16 October 2020, December 2020. https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/ink-analysis
Abbas, A., Khurshid, K., Shafait, F.: Towards automated ink mismatch detection in hyperspectral document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1229–1236. IEEE (2017)
Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010)
Barnes, M., Pan, Z., Zhang, S.: Systems and methods for hyperspectral imaging, US Patent 9,117,133, 25 Aug 2015
Braz, A., LĂ³pez-LĂ³pez, M., GarcĂa-Ruiz, C.: Raman spectroscopy for forensic analysis of inks in questioned documents. Forensic Sci. Int. 232(1–3), 206–212 (2013)
Causin, V., Casamassima, R., Marruncheddu, G., Lenzoni, G., Peluso, G., Ripani, L.: The discrimination potential of diffuse-reflectance ultraviolet-visible-near infrared spectrophotometry for the forensic analysis of paper. Forensic Sci. Int. 216(1–3), 163–167 (2012)
Chang, C.I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification, vol. 1. Springer, Cham (2003). https://doi.org/10.1007/978-1-4419-9170-6
Comon, P.: Independent Component Analysis (1992)
Comon, P.: Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)
Craddock, P.: Scientific Investigation of Copies, Fakes and Forgeries. Routledge, Milton Park (2009)
Deep Kaur, C., Kanwal, N.: An analysis of image forgery detection techniques. Stat. Optim. Inf. Comput. 7(2), 486–500 (2019)
Devassy, B.M., George, S.: Ink classification using convolutional neural network. NISK J. 12 (2019)
Ding, C., He, X.: \(k\)-means clustering via principal component analysis. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 29. Association for Computing Machinery, New York (2004). https://doi.org/10.1145/1015330.1015408
ElMasry, G., Sun, D.W.: Principles of hyperspectral imaging technology. In: Hyperspectral Imaging for Food Quality Analysis and Control, pp. 3–43. Elsevier (2010)
Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)
Farid, H.: Image forgery detection. IEEE Signal Process. Mag. 26(2), 16–25 (2009)
Fodor, I.K.: A survey of dimension reduction techniques. Technical report, Citeseer (2002)
Gowen, A.A., O’Donnell, C.P., Cullen, P.J., Downey, G., Frias, J.M.: Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18(12), 590–598 (2007)
Hyvärinen, A.: Survey on independent component analysis (1999)
Islam, A.U., Khan, M.J., Khurshid, K., Shafait, F.: Hyperspectral image analysis for writer identification using deep learning. In: 2019 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–7. IEEE (2019)
Joliffe, I.T., Morgan, B.: Principal component analysis and exploratory factor analysis. Stat. Meth. Med. Res. 1(1), 69–95 (1992)
Khan, M.J., Khurshid, K., Shafait, F.: A spatio-spectral hybrid convolutional architecture for hyperspectral document authentication. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1097–1102. IEEE (2019)
Khan, M.J., Yousaf, A., Khurshid, K., Abbas, A., Shafait, F.: Automated forgery detection in multispectral document images using fuzzy clustering. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS), pp. 393–398. IEEE (2018)
Khan, Z., Shafait, F., Mian, A.: Hyperspectral imaging for ink mismatch detection. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 877–881. IEEE (2013)
Khan, Z., Shafait, F., Mian, A.: Automatic ink mismatch detection for forensic document analysis. Pattern Recogn. 48(11), 3615–3626 (2015)
Khan, Z., Shafait, F., Mian, A.S.: Towards automated hyperspectral document image analysis. In: AFHA, pp. 41–45 (2013)
Kim, J.O., Ahtola, O., Spector, P.E., Mueller, C.W., et al.: Introduction to Factor Analysis: What It Is and How to Do It, no. 13. Sage (1978)
Koppenhaver, K.M.: Forgery. Forensic Document Examination: Principles and Practice, pp. 55–60 (2007)
Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901 (2014)
Luo, Z., Shafait, F., Mian, A.: Localized forgery detection in hyperspectral document images. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 496–500. IEEE (2015)
Morales, A., Ferrer, M.A., Diaz-Cabrera, M., Carmona, C., Thomas, G.L.: The use of hyperspectral analysis for ink identification in handwritten documents. In: 2014 International Carnahan Conference on Security Technology (ICCST), pp. 1–5. IEEE (2014)
Polikreti, K.: Detection of ancient marble forgery: techniques and limitations. Archaeometry 49(4), 603–619 (2007)
Rahiche, A., Cheriet, M.: Forgery detection in hyperspectral document images using graph orthogonal nonnegative matrix factorization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 662–663 (2020)
Schultz, R.A., Nielsen, T., Zavaleta, J.R., Ruch, R., Wyatt, R., Garner, H.R.: Hyperspectral imaging: a novel approach for microscopic analysis. Cytometry 43(4), 239–247 (2001)
Springer, E., Bergman, P.: Applications of non-destructive testing (NDT) in vehicle forgery examinations. J. Forensic Sci. 39(3), 751–757 (1994)
Wang, W., Zhang, L., Wei, D., Zhao, Y., Wang, J.: The principle and application of hyperspectral imaging technology in detection of handwriting. In: 2017 9th International Conference on Advanced Infocomm Technology (ICAIT), pp. 345–349. IEEE (2017)
Wells, M.R., Vaidya, U.: RNA transcription in axotomized dorsal root ganglion neurons. Mol. Brain Res. 27(1), 163–166 (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rastogi, V., Srivastava, S., Jaiswal, G., Sharma, A. (2022). Detecting Document Forgery Using Hyperspectral Imaging and Machine Learning. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-11349-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11348-2
Online ISBN: 978-3-031-11349-9
eBook Packages: Computer ScienceComputer Science (R0)