Abstract
Although enormous success is achieved in the field of object detection, yet ship detection in high-resolution images is still an crucial task. Ship detection from optical remote sensing images plays a significant role in military and civil applications. For maritime surveillance, monitoring and traffic supervision ship detection deserves optimal solutions to identify objects accurately with faster speed. In this work, various object detection methods such as You Only Look Once (YOLO) v3, YOLO v4, RetinaNet152, EfficientDet-D2 and Faster-RCNN have been implemented to improve efficiency, speed and accuracy. Numerous experiments were conducted to evaluate the efficiency of object detection methods. The YOLO v4 with custom selection of anchor boxes using K-means++ clustering algorithm outperformed as compared to other detection methods in terms of accuracy, which is evaluated using COCO metrics, training and detection time. All the experiments are performed on the Airbus detection dataset from https://www.kaggle.com/c/airbus-ship-detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Airbus Ship Detection Challenge.: https://www.kaggle.com/c/airbus-ship-detection. Last accessed 22 June 2021
European Space Agency: SPOT. https://earth.esa.int/eogateway/missions/spot. Last accessed 29 June 2021
Chen, Y., Zheng, J., Zhou, Z.: Airbus Ship Detection-Traditional vs Convolutional Neural Network Approach (n.d.)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Nie, M., Zhang, J., Zhang, X.: Ship segmentation and orientation estimation using keypoints detection and voting mechanism in remote sensing images. In: International Symposium on Neural Networks, pp. 402–413. Springer, Cham (2019)
Štepec, D., Martinčič, T., Skočaj, D.: Automated system for ship detection from medium resolution satellite optical imagery. In: Oceans 2019 MTS/IEEE, Seattle, pp. 1–10, IEEE (2019)
Nie, X., Duan, M., Ding, H., Hu, B., Wong, E.K.: Attention mask R-CNN for ship detection and segmentation from remote sensing images. IEEE Access 8, 9325–9334 (2020)
Li, X., Cai, K.: Method research on ship detection in remote sensing image based on Yolo algorithm. In: 2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS), pp. 104–108, IEEE (2020)
Li, L., Zhou, Z., Wang, B., Miao, L., An, Z., Xiao, X.: Domain adaptive ship detection in optical remote sensing images. Remote Sens. 13(16), 3168 (2021)
Zhang, Z.X., et al.: CCNet: a high-speed cascaded convolutional neural network for ship detection with multispectral images. Infrared. Millim. Waves 38(3), 290–295 (2019)
Huang, Z., Sun, S., Li, R.: Fast single-shot ship instance segmentation based on polar template mask in remote sensing images. In: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 1236–1239, IEEE (2020)
Polat, M., Mohammed, H.M.A., Oral, E.A.: Ship detection in satellite images. In: ISASE2018, p. 200 (2018)
Xia, X., Lu, Q., Gu, X.: Exploring an easy way for imbalanced data sets in semantic image segmentation. J. Phys. Conf. Ser. 1213(2) 022003 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer, Cham (2015)
Hordiiuk, D., Oliinyk, I., Hnatushenko, V., Maksymov, K.: Semantic segmentation for ships detection from satellite imagery. In: 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), pp. 454–457, IEEE (2019)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
De Vieilleville, F., May, S., Lagrange, A., Dupuis, A., Ruiloba, R.: Simplification of deep neural networks for image analysis at the edge. In: Actes de la Conférence CAID 2020, p. 4 (2020)
Smith, B., Chester, S., Coady, Y.: Ship detection in satellite optical imagery. In: 2020 3rd Artificial Intelligence and Cloud Computing Conference, pp. 11–18 (2020)
Talon, P., Pérez-Villar, J.I B., Hadland, A., Wyniawskyj, N.S., Petit, D., Wilson, M.: Ship detection on single-band grayscale imagery using deep learning and AIS signal matching using non-rigid transformations. In: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 248–251, IEEE (2020)
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114, PMLR (2019)
Karki, S., Kulkarni, S.: Ship detection and segmentation using Unet. In: 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), pp. 1–7, IEEE (2021)
Howard, J., Gugger, S.: Fastai: a layered API for deep learning. Information 11(2), 108 (2020)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Chen, J., Xie, F., Lu, Y., Jiang, Z.: Finding arbitrary-oriented ships from remote sensing images using corner detection. IEEE Geosci. Remote Sens. Lett. 17(10), 1712–1716 (2019)
Rogers, C., et al.: Adversarial artificial intelligence for overhead imagery classification models. In: 2019 Systems and Information Engineering Design Symposium (SIEDS), pp. 1–6, IEEE (2019)
Hu, J., Zhi, X., Zhang, W., Ren, L., Bruzzone, L.: Salient ship detection via background prior and foreground constraint in remote sensing images. Remote Sens. 12(20), 3370 (2020)
Xu, W., Zhang, C., Wu, M.: Multi-scale deep residual network for satellite image super-resolution reconstruction. In: Chinese Conference on Pattern Recognition and Computer Vision (PRCV), pp. 332–340. Springer, Cham (2019)
Duan, Y., Li, Z., Tao, X., Li, Q., Hu, S., Lu, J.: EEG-based maritime object detection for iot-driven surveillance systems in smart ocean. IEEE Internet Things J. 7(10), 9678–9687 (2020)
Haas, L.F.: Hans berger (1873–1941), richard caton (1842–1926), and electroencephalography. J. Neurol. Neurosurg. Psychiatry 74(1), 9 (2003)
Ashton, K.: That ‘internet of things’ thing. RFID J. 22(7), 97–114 (2009)
Zhong, Z., Li, Y., Han, Z., Yang, Z.: Ship target detection based on Lightgbm algorithm. In: 2020 International Conference on Computer Information and Big Data Applications (CIBDA), pp. 425–429, IEEE (2020)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)
Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst. 30, 3146–3154 (2017)
Zhou, X., Wang, D., Krähenbühl, P.: Objects as points (2019)
Wang, J., Yang, W., Guo, H., Zhang, R., Xia, G.S.: Tiny object detection in aerial images. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 3791–3798, IEEE (2021)
Yu, F., Wang, D., Shelhamer, E., & Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)
Cordova, A.W.A., Quispe, W.C., Inca, R.J.C., Choquehuayta, W.N., Gutierrez, E.C.: New approaches and tools for ship detection in optical satellite imagery. J. Phys. Conf. Ser. 1642(1), 012003 (2020)
Van Etten, A.: You only look twice: rapid multi-scale object detection in satellite imagery. arXiv preprint arXiv:1805.09512 (2018)
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y. M.: YOLOv4: optimal speed and accuracy of object detection (2020)
Lisbon, P.T.: Ship Segmentation in Areal Images for Maritime Surveillance (n.d.)
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018)
Mohamed, E., Shaker, A., Rashed, H., El-Sallab, A., Hadhoud, M.: INSTA-YOLO: Real-time instance segmentation (2021)
Ramesh, S.S., Kimtani, M.Y., Talukdar, M.Y., Shah, M.A.K.: Ship detection and classification of satellite images using deep learning (n.d.)
Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. Stanford (2006)
Jin, X., Han, J.: K-means clustering. In: Sammut, C., Webb, G.I., (eds.), Encyclopedia of Machine Learning, pp. 563–564 (2010)
Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)
Zepeda-Mendoza, M.L., Resendis-Antonio, O.: Hierarchical agglomerative clustering. Ency. Syst. Biol. 43(1), 886–887 (2013)
Lin, T.-Y., et al.: Detection evaluation. https://cocodataset.org/#detection-eval. Last accessed 2 July 2021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sharma, R., Sharma, H., Meena, T., Khandnor, P., Bansal, P., Sharma, P. (2022). Performance Evaluation of Deep Learning Models for Ship Detection. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-11349-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11348-2
Online ISBN: 978-3-031-11349-9
eBook Packages: Computer ScienceComputer Science (R0)