Skip to main content

Performance Evaluation of Deep Learning Models for Ship Detection

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Abstract

Although enormous success is achieved in the field of object detection, yet ship detection in high-resolution images is still an crucial task. Ship detection from optical remote sensing images plays a significant role in military and civil applications. For maritime surveillance, monitoring and traffic supervision ship detection deserves optimal solutions to identify objects accurately with faster speed. In this work, various object detection methods such as You Only Look Once (YOLO) v3, YOLO v4, RetinaNet152, EfficientDet-D2 and Faster-RCNN have been implemented to improve efficiency, speed and accuracy. Numerous experiments were conducted to evaluate the efficiency of object detection methods. The YOLO v4 with custom selection of anchor boxes using K-means++ clustering algorithm outperformed as compared to other detection methods in terms of accuracy, which is evaluated using COCO metrics, training and detection time. All the experiments are performed on the Airbus detection dataset from https://www.kaggle.com/c/airbus-ship-detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Airbus Ship Detection Challenge.: https://www.kaggle.com/c/airbus-ship-detection. Last accessed 22 June 2021

  2. European Space Agency: SPOT. https://earth.esa.int/eogateway/missions/spot. Last accessed 29 June 2021

  3. Chen, Y., Zheng, J., Zhou, Z.: Airbus Ship Detection-Traditional vs Convolutional Neural Network Approach (n.d.)

    Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  8. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  9. Nie, M., Zhang, J., Zhang, X.: Ship segmentation and orientation estimation using keypoints detection and voting mechanism in remote sensing images. In: International Symposium on Neural Networks, pp. 402–413. Springer, Cham (2019)

    Google Scholar 

  10. Štepec, D., Martinčič, T., Skočaj, D.: Automated system for ship detection from medium resolution satellite optical imagery. In: Oceans 2019 MTS/IEEE, Seattle, pp. 1–10, IEEE (2019)

    Google Scholar 

  11. Nie, X., Duan, M., Ding, H., Hu, B., Wong, E.K.: Attention mask R-CNN for ship detection and segmentation from remote sensing images. IEEE Access 8, 9325–9334 (2020)

    Article  Google Scholar 

  12. Li, X., Cai, K.: Method research on ship detection in remote sensing image based on Yolo algorithm. In: 2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS), pp. 104–108, IEEE (2020)

    Google Scholar 

  13. Li, L., Zhou, Z., Wang, B., Miao, L., An, Z., Xiao, X.: Domain adaptive ship detection in optical remote sensing images. Remote Sens. 13(16), 3168 (2021)

    Article  Google Scholar 

  14. Zhang, Z.X., et al.: CCNet: a high-speed cascaded convolutional neural network for ship detection with multispectral images. Infrared. Millim. Waves 38(3), 290–295 (2019)

    Google Scholar 

  15. Huang, Z., Sun, S., Li, R.: Fast single-shot ship instance segmentation based on polar template mask in remote sensing images. In: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 1236–1239, IEEE (2020)

    Google Scholar 

  16. Polat, M., Mohammed, H.M.A., Oral, E.A.: Ship detection in satellite images. In: ISASE2018, p. 200 (2018)

    Google Scholar 

  17. Xia, X., Lu, Q., Gu, X.: Exploring an easy way for imbalanced data sets in semantic image segmentation. J. Phys. Conf. Ser. 1213(2) 022003 (2019)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer, Cham (2015)

    Google Scholar 

  19. Hordiiuk, D., Oliinyk, I., Hnatushenko, V., Maksymov, K.: Semantic segmentation for ships detection from satellite imagery. In: 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), pp. 454–457, IEEE (2019)

    Google Scholar 

  20. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  21. De Vieilleville, F., May, S., Lagrange, A., Dupuis, A., Ruiloba, R.: Simplification of deep neural networks for image analysis at the edge. In: Actes de la Conférence CAID 2020, p. 4 (2020)

    Google Scholar 

  22. Smith, B., Chester, S., Coady, Y.: Ship detection in satellite optical imagery. In: 2020 3rd Artificial Intelligence and Cloud Computing Conference, pp. 11–18 (2020)

    Google Scholar 

  23. Talon, P., Pérez-Villar, J.I B., Hadland, A., Wyniawskyj, N.S., Petit, D., Wilson, M.: Ship detection on single-band grayscale imagery using deep learning and AIS signal matching using non-rigid transformations. In: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 248–251, IEEE (2020)

    Google Scholar 

  24. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114, PMLR (2019)

    Google Scholar 

  25. Karki, S., Kulkarni, S.: Ship detection and segmentation using Unet. In: 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), pp. 1–7, IEEE (2021)

    Google Scholar 

  26. Howard, J., Gugger, S.: Fastai: a layered API for deep learning. Information 11(2), 108 (2020)

    Article  Google Scholar 

  27. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  28. Chen, J., Xie, F., Lu, Y., Jiang, Z.: Finding arbitrary-oriented ships from remote sensing images using corner detection. IEEE Geosci. Remote Sens. Lett. 17(10), 1712–1716 (2019)

    Article  Google Scholar 

  29. Rogers, C., et al.: Adversarial artificial intelligence for overhead imagery classification models. In: 2019 Systems and Information Engineering Design Symposium (SIEDS), pp. 1–6, IEEE (2019)

    Google Scholar 

  30. Hu, J., Zhi, X., Zhang, W., Ren, L., Bruzzone, L.: Salient ship detection via background prior and foreground constraint in remote sensing images. Remote Sens. 12(20), 3370 (2020)

    Article  Google Scholar 

  31. Xu, W., Zhang, C., Wu, M.: Multi-scale deep residual network for satellite image super-resolution reconstruction. In: Chinese Conference on Pattern Recognition and Computer Vision (PRCV), pp. 332–340. Springer, Cham (2019)

    Google Scholar 

  32. Duan, Y., Li, Z., Tao, X., Li, Q., Hu, S., Lu, J.: EEG-based maritime object detection for iot-driven surveillance systems in smart ocean. IEEE Internet Things J. 7(10), 9678–9687 (2020)

    Article  Google Scholar 

  33. Haas, L.F.: Hans berger (1873–1941), richard caton (1842–1926), and electroencephalography. J. Neurol. Neurosurg. Psychiatry 74(1), 9 (2003)

    Article  Google Scholar 

  34. Ashton, K.: That ‘internet of things’ thing. RFID J. 22(7), 97–114 (2009)

    Google Scholar 

  35. Zhong, Z., Li, Y., Han, Z., Yang, Z.: Ship target detection based on Lightgbm algorithm. In: 2020 International Conference on Computer Information and Big Data Applications (CIBDA), pp. 425–429, IEEE (2020)

    Google Scholar 

  36. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  37. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst. 30, 3146–3154 (2017)

    Google Scholar 

  38. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points (2019)

    Google Scholar 

  39. Wang, J., Yang, W., Guo, H., Zhang, R., Xia, G.S.: Tiny object detection in aerial images. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 3791–3798, IEEE (2021)

    Google Scholar 

  40. Yu, F., Wang, D., Shelhamer, E., & Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)

    Google Scholar 

  41. Cordova, A.W.A., Quispe, W.C., Inca, R.J.C., Choquehuayta, W.N., Gutierrez, E.C.: New approaches and tools for ship detection in optical satellite imagery. J. Phys. Conf. Ser. 1642(1), 012003 (2020)

    Google Scholar 

  42. Van Etten, A.: You only look twice: rapid multi-scale object detection in satellite imagery. arXiv preprint arXiv:1805.09512 (2018)

  43. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y. M.: YOLOv4: optimal speed and accuracy of object detection (2020)

    Google Scholar 

  44. Lisbon, P.T.: Ship Segmentation in Areal Images for Maritime Surveillance (n.d.)

    Google Scholar 

  45. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018)

    Google Scholar 

  46. Mohamed, E., Shaker, A., Rashed, H., El-Sallab, A., Hadhoud, M.: INSTA-YOLO: Real-time instance segmentation (2021)

    Google Scholar 

  47. Ramesh, S.S., Kimtani, M.Y., Talukdar, M.Y., Shah, M.A.K.: Ship detection and classification of satellite images using deep learning (n.d.)

    Google Scholar 

  48. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. Stanford (2006)

    Google Scholar 

  49. Jin, X., Han, J.: K-means clustering. In: Sammut, C., Webb, G.I., (eds.), Encyclopedia of Machine Learning, pp. 563–564 (2010)

    Google Scholar 

  50. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  51. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  52. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  53. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  54. Zepeda-Mendoza, M.L., Resendis-Antonio, O.: Hierarchical agglomerative clustering. Ency. Syst. Biol. 43(1), 886–887 (2013)

    Google Scholar 

  55. Lin, T.-Y., et al.: Detection evaluation. https://cocodataset.org/#detection-eval. Last accessed 2 July 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamanna Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, R., Sharma, H., Meena, T., Khandnor, P., Bansal, P., Sharma, P. (2022). Performance Evaluation of Deep Learning Models for Ship Detection. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics