Skip to main content

Fuzzy Entropy k-Plane Clustering Method and Its Application to Medical Image Segmentation

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Abstract

MRI images are complex, and the data distribution of tissues in MRI are non-spherical and overlapping in nature. Plane-based clustering methods are more efficient in comparison to centroid based clustering for non-spherical data, and soft clustering methods can efficiently handle the overlapping nature by representing clusters in terms of fuzzy sets. In this paper, we propose fuzzy entropy k-plane clustering (FEkPC), which incorporates the fuzzy partition entropy term with a fuzzy entropy parameter in the optimization problem of the conventional kPC method. The fuzzy entropy parameter controls the degree of fuzziness, the same as the fuzzifier parameter in the fuzzy clustering method. The fuzzy entropy terms try to minimize averaged non-membership degrees in the cluster. The performance of the proposed method has been evaluated over three publicly available MRI datasets: one simulated and two real human brain MRI datasets. The experimental results show that the proposed FEkPC method outperforms other state-of-the-art methods in terms of ASA and Dice Score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, X., Zhang, Y., Liu, H., Chen, Z.: Similarity measure-based possibilistic FCM with label information for brain MRI segmentation. IEEE Trans. Cybern. 49(7), 2618–2630 (2018)

    Article  Google Scholar 

  2. Balafar, M.: Fuzzy C-mean based brain MRI segmentation algorithms. Artif. Intell. Rev. 41(3), 441–449 (2014)

    Article  Google Scholar 

  3. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy C-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  4. Bora, D.J., Gupta, D., Kumar, A.: A comparative study between fuzzy clustering algorithm and hard clustering algorithm. arXiv preprint arXiv:1404.6059 (2014)

  5. Bouchon-Meunier, B., Detyniecki, M., Lesot, M.J., Marsala, C., Rifqi, M.: Real-world fuzzy logic applications in data mining and information retrieval. In: Wang, P.P., Ruan, D., Kerre, E.E. (eds.) Fuzzy Logic. STUDFUZZ, vol. 215, pp. 219–247. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71258-9_11

  6. Bradley, P.S., Mangasarian, O.L.: K-plane clustering. J. Glob. Optim. 16(1), 23–32 (2000)

    Article  MathSciNet  Google Scholar 

  7. Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Pike, G.B., Evans, A.C.: BrainWeb: online interface to a 3D MRI simulated brain database. In: NeuroImage. Citeseer (1997)

    Google Scholar 

  8. Dhanachandra, N., Chanu, Y.J.: A survey on image segmentation methods using clustering techniques. Eur. J. Eng. Technol. Res. 2(1), 15–20 (2017)

    Google Scholar 

  9. Gan, G., Wu, J., Yang, Z.: A fuzzy subspace algorithm for clustering high dimensional data. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 271–278. Springer, Heidelberg (2006). https://doi.org/10.1007/11811305_30

    Chapter  Google Scholar 

  10. Ghosal, A., Nandy, A., Das, A.K., Goswami, S., Panday, M.: A short review on different clustering techniques and their applications. Emerg. Technol. Model. Graph., 69–83 (2020)

    Google Scholar 

  11. Liu, J., Pham, T.D., Yan, H., Liang, Z.: Fuzzy mixed-prototype clustering algorithm for microarray data analysis. Neurocomputing 276, 42–54 (2018)

    Article  Google Scholar 

  12. Nie, F., Wang, C.L., Li, X.: K-multiple-means: a multiple-means clustering method with specified k clusters. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 959–967 (2019)

    Google Scholar 

  13. Zhu, L., Wang, S,, Pan, Y., Han, B.: Improved fuzzy partitions for K-plane clustering algorithm and its robustness research. J. Electron. Inf. Technol. 30(8), 1923–1927 (2008)

    Google Scholar 

  14. Smith, S.M.: BET: brain extraction tool (2000)

    Google Scholar 

  15. Tran, D., Wagner, M.: Fuzzy entropy clustering. In: Ninth IEEE International Conference on Fuzzy Systems. FUZZ-IEEE 2000 (Cat. No. 00CH37063), vol. 1, pp. 152–157. IEEE (2000)

    Google Scholar 

  16. Zadeh, L.A.: Fuzzy sets. In: Zadeh, L.A. (ed.) Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers, pp. 394–432. World Scientific (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, P., Kumar, D., Agrawal, R.K. (2022). Fuzzy Entropy k-Plane Clustering Method and Its Application to Medical Image Segmentation. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics