Skip to main content

Residual Inception Cycle-Consistent Adversarial Networks

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1568))

Included in the following conference series:

  • 819 Accesses

Abstract

Unpaired Image-to-image translation is a problem formulation where our aim is to learn a function which can convert an image of one domain into another different domain without using a paired set of examples. One of the methods to tackle this problem is CycleGAN. Even though it had remarkable success in the recent years, it still have some issues Our method enhances CycleGAN formulation by replacing the Residual block with our proposed Residual-Inception module for multi-scale feature extraction and by adding a cyclic perceptual loss for improving the quality of texture in recovered image and generating visually better results. Qualitative results are presented on horse2zebra dataset and Quantitative results on I-Haze and Rain 1200 datasets. We show both quantitative and qualitative results on 3 datasets and show that our method improves the CycleGAN method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  2. Zhao, J, Mathieu, M, LeCun, Y.: Energy-based generative adversarial network. In: ICLR (2017)

    Google Scholar 

  3. Zhu, J.-Y, Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  4. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  5. Sajjadi, M.S., Scholkopf, and B., Hirsch, M.: Enhancenet: single image super-resolution through automated texture synthesis. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  8. Ancuti, C.O, Ancuti, C, Timofte, R, De Vleeschouwer, C.: I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images. arXiv (2018)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R, Li, L.-J, Li, K, Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  10. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  11. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  12. Radford, A., Metz, L., Chintala S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)

    Google Scholar 

  13. Denton, E.L., et al. :Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS 2(015)

    Google Scholar 

  14. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS (2016)

    Google Scholar 

  15. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: ICML (2016)

    Google Scholar 

  16. Mathieu, M.F., Zhao, J., Ramesh, A., Sprechmann, P., LeCun, Y.: Disentangling factors of variation in deep representation using adversarial training. In: NIPS (2016)

    Google Scholar 

  17. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: SIGGRAPH (2001)

    Google Scholar 

  18. Mathieu, M., Couprie, C., LeCun, Y.: Deep multiscale video prediction beyond mean square error. In: ICLR (2016)

    Google Scholar 

  19. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV (1999)

    Google Scholar 

  20. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)

    Google Scholar 

  21. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  22. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Imageto-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  23. Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Scribbler: controlling deep image synthesis with sketch and color. In: CVPR (2017)

    Google Scholar 

  24. Karacan, L., Akata, Z., Erdem, A., Erdem, E.: Learning to generate images of outdoor scenes from attributes and semantic layouts. arXiv preprint arXiv:1612.00215 (2016)

  25. Rosales, R., Achan, K., Frey, B.J.: Unsupervised image translation. In: ICCV (2003)

    Google Scholar 

  26. Aytar, Y., Castrejon, L., Vondrick, C., Pirsiavash, H., Torralba, A.: Cross-modal scene networks. In: PAMI (2016)

    Google Scholar 

  27. Liu, M.-Y., Tuzel, O.: Coupled generative adversarial networks. In: NIPS (2016)

    Google Scholar 

  28. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.: Texture networks: Feed-forward synthesis of textures and stylized images. In: ICML (2016)

    Google Scholar 

  29. Liu, M.-Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS (2017)

    Google Scholar 

  30. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  31. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: CVPR (2017)

    Google Scholar 

  32. Taigman, Y., Polyak, A, Wolf, L.: Unsupervised cross-domain image generation. In: ICLR (2017)

    Google Scholar 

  33. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR (2017)

    Google Scholar 

  34. Gatys, L.A., Ecker, A.S, and M. Bethge. Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  35. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  36. Gatys, L.A., Bethge, M., Hertzmann, A., Shechtman, E.: Preserving color in neural artistic style transfer. arXiv preprint arXiv:1606.05897 (2016)

  37. Chaudhary, S., Murala, S.: Deep network for human action recognition using Weber motion. Neurocomputing 367, 207–216 (2019)

    Article  Google Scholar 

  38. Chaudhary, S., Murala, S.: Depth-based end-to-end deep network for human action recognition. IET Comput. Vision 13(1), 15–22 (2019)

    Article  Google Scholar 

  39. Chaudhary, S., Murala, S.: TSNet: deep network for human action recognition in hazy videos. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3981–3986 (2018). https://doi.org/10.1109/SMC.2018.00675

  40. Chaudhary, S., Dudhane, A., Patil, P., Murala, S.: Pose guided dynamic image network for human action recognition in person centric videos. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8 (2019) .https://doi.org/10.1109/AVSS.2019.8909835

  41. Chaudhary, S.: Deep learning approaches to tackle the challenges of human action recognition in videos. Dissertation (2019)

    Google Scholar 

  42. Nancy, M., Murala, S.: MSAR-Net: multi-scale attention based light-weight image super-resolution. Pattern Recogn. Lett. 151, 215–221 (2021)

    Article  Google Scholar 

  43. Akshay, D., Biradar, K.M., Patil, P.W., Hambarde, P., Murala, S.: Varicolored image de-hazing. In: proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Pp. 4564–4573 (2020)

    Google Scholar 

  44. Praful, H., Dudhane, A., Murala, S.: Single image depth estimation using deep adversarial training. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 989–993. IEEE (2019)

    Google Scholar 

  45. Hambarde, P., Dudhane, A., Patil, P.W., Murala, S., Dhall, A.: Depth estimation from single image and semantic prior. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 1441–1445. IEEE (2020)

    Google Scholar 

  46. Hambarde, P., Murala, S.: S2DNet: depth estimation from single image and sparse samples. IEEE Trans. Comput. Imaging 6, 806–817 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nanda, E.S., Galshetwar, V.M., Chaudhary, S. (2022). Residual Inception Cycle-Consistent Adversarial Networks. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics