Abstract
The important goal of this work is to design a system for elderly people who are at higher risk of falling due to some illness. We aim to do this without burdening them with the different number of devices around them including wear-able devices. We aim to continuously monitor them in a closed environment for any kind of falls or injuries that might occur to them. This paper aims to achieve this with the help of only video surveillance [13, 16]. We also aim to propose a method where the model is very cost-friendly and easy to implement in any closed environment. Our model removes any use of wearable sensors and proposes an approach where we use inputs from only RGB camera-based sensors and then uses different computer vision approaches [2, 6] to decide if the person has fallen or not. We are using a two-stream network to attain more accuracy. Estimating the motion of a person on regular basis is the main step in the proposed method. There are two most popular publically available methods for motion detection namely Optical Flow (OF) [26] and Motion History Image (MHI) [17]. In the proposed method, we are using OF for the motion estimation. With the help of OF [26] and VGG16 [25] we have proposed a method for elderly patient monitoring system using live camera to detect a falling person. Despite not using multiple wearable and non-wearable sensors our proposed method outperforms the existing fall detection models. We have worked on the publically available UR-Fall Dataset [10].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, J., Lockhart, T.E.: Development and evaluation of a prior-to-impact fall event detection algorithm. IEEE Trans. Biomed. Eng. 61(7), 2135–2140 (2014). https://doi.org/10.1109/TBME.2014.2315784
Chaudhary, S. Deep learning approaches to tackle the challenges of human action recognition in videos. Dissertation (2019)
Patil, P.W., Dudhane, A., Chaudhary, S., Murala, S.: Multi-frame based adversarial learning approach for video surveillance. Pattern Recognit. 122, 108350 (2022)
Yazar, A., Erden, F., Cetin, A.: Multi-sensor ambient assisted living system for fall detection (2014)
Agrawal, S.C., Tripathi, R.K., Jalal, A.S.: Human-fall detection from an in-door video surveillance. In: 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, pp. 1–5 (2017). https://doi.org/10.1109/ICCCNT.2017.8203923.
Chaudhary, S., Dudhane, A., Patil, P., Murala, S.: Pose guided dynamic image network for human action recognition in person centric videos. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8 (2019). https://doi.org/10.1109/AVSS.2019.8909835.
Astriani, M.S., Bahana, R., Kurniawan, A., Yi, L.H.: Threshold-based low power consumption human fall detection for health care and monitoring system. In: 2020 International Conference on Information Management and Technology (ICIMTech), Bandung, Indonesia, pp. 853–857 (2020). https://doi.org/10.1109/ICIMTech50083.2020.9211233.
Wang, X., Jia, K.: Human fall detection algorithm based on YOLOv3. In: 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC), Beijing, China, pp. 50–54 (2020). https://doi.org/10.1109/ICIVC50857.2020.9177447.
Kamble, K.P., Sontakke, S.S., Donadkar, H., Poshattiwar, R., Ananth, A.: Fall alert: a novel approach to detect fall using base as a YOLO object detection. In: Hassanien, A., Bhatnagar, R., Darwish, A. (eds.) Advanced Machine Learning Technologies and Applications, AMLTA 2020. Advances in Intelligent Systems and Computing, vol. 1141, pp. 15–24. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-3383-9_2
UR Fall Detection Dataset (n.d.). http://fe-nix.univ.rzeszow.pl/~mkepski/ds/uf.html. 28 Sept 2021
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91
Patil, P.W., Biradar, K.M., Dudhane, A., Murala, S.: An end-to-end edge aggregation network for moving object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8149–8158 (2020)
Chaudhary, S., Murala, S.: Deep network for human action recognition using Weber motion. Neurocomputing 367, 207–216 (2019)
Center for Disease Control and Prevention. www.cdc.gov/HomeandRecre-ationalSafety
a/l Kanawathi, J., Mokri, S.S., Ibrahim, N., Hussain, A., Mustafa, M.M.: Motion detection using Horn Schunck algorithm and implementation. In: 2009 International Conference on Electrical Engineering and Informatics, pp. 83–87 (2009). https://doi.org/10.1109/ICEEI.2009.5254812.
Chaudhary, S., Murala, S.: Depth-based end-to-end deep network for human action recognition. IET Comput. Vis. 13(1), 15–22 (2019)
Ahad, M., Rahman, A., Jie, T., Kim, H., Ishikawa, S.: Motion history image: Its variants and applications. Mach. Vis. Appl. 23, 255–281 (2010). https://doi.org/10.1007/s00138-010-0298-4
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014, ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016). https://doi.org/10.1109/TPAMI.2015.2437384
Girshick, R.: Fast R-CNN (2015)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks (2016)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893 (2005). https://doi.org/10.1109/CVPR.2005.177
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks (2016).
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision, ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)
Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981). https://doi.org/10.1016/0004-3702(81)90024-2
Chaudhary, S., Murala, S.: TSNet: deep network for human action recognition in hazy videos. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3981–3986 2018. https://doi.org/10.1109/SMC.2018.00675
Núñez-Marcos, A., Azkune, G., Arganda-Carreras, I.: Vision-based fall detection with convolutional neural networks. Wirel. Commun. Mob. Comput. 1–16 (2017). https://doi.org/10.1155/2017/9474806
Badgujar, S., Pillai, A.S.: Fall detection for elderly people using machine learning. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, pp. 1–4 (2020). https://doi.org/10.1109/ICCCNT49239.2020.9225494
Hambarde, P., Dudhane, A., Patil, P.W., Murala, S., Dhall, A.: Depth estimation from single image and semantic prior. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 1441–1445. IEEE (2020)
Hambarde, P., Dudhane, A., Murala, S.: Single image depth estimation using deep adversarial training. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 989–993. IEEE (2019)
Patil, P.W., Dudhane, A.¸ Kulkarni, A., Murala, S., Gonde, A.B., Gupta, S.: An unified recurrent video object segmentation framework for various surveillance environments. IEEE Trans. Image Process. 30, 7889–7902 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Raghav, A., Chaudhary, S. (2022). Elderly Patient Fall Detection Using Video Surveillance. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-11349-9_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11348-2
Online ISBN: 978-3-031-11349-9
eBook Packages: Computer ScienceComputer Science (R0)