Skip to main content

Single Frame-Based Video Dehazing with Adversarial Learning

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1568))

Included in the following conference series:

  • 1018 Accesses

Abstract

Hazy environmental conditions degrade the quality of captured videos which leads to poor visibility and color distortion in videos. Such deterioration of captured video quality is mainly because of the attenuation caused by the scattering of light due to the haze particles present in the environment. In this paper, we propose an adversarial learning based single frame video dehazing encoder-decoder network. The proposed method comprises of Dilated Residual Block (DRB) used as encoder and Skip connection. DRB module is used to gain more contextual information by achieving large receptive fields. Skip connections are established between each encoder and decoder, which helps to detect and give more attention to haze specific features by adjusting the weights of learned feature maps automatically. This helps to extract the haze-relevant feature maps and recovers the haze-free video frame by using Channel Attention Block (CAB) and Residual Block (ResB) respectively. An extensive quantitative and qualitative analysis of the proposed method is done on benchmark synthetic hazy video database namely DAVIS-16 and NYU depth. Experimental result shows that the proposed method outperforms the other existing state-of-the-art (SOTA) approaches for video dehazing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ancuti, C.O., Ancuti, C.: Single image dehazing by multi-scale fusion. IEEE Trans. Image Process. 22(8), 3271–3282 (2013)

    Article  Google Scholar 

  2. Berman, D., treibitz, T., Avidan, S.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  3. Chaudhary, S., Murala, S.: TSNet: deep network for human action recognition in hazy videos. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3981–3986 (2018). https://doi.org/10.1109/SMC.2018.00675

  4. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  5. Choi, L.K., You, J., Bovik, A.C.: Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans. Image Process. 24(11), 3888–3901 (2015)

    Article  MathSciNet  Google Scholar 

  6. Zhang, J., et al.: Hierarchical density-aware dehazing network. IEEE Trans. Cybern., 1–13 (2021). https://doi.org/10.1109/TCYB.2021.3070310

  7. Dudhane, A., Aulakh, H.S., Murala, S.: RI-GAN: an end-to-end network for single image haze removal. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2014–2023 (2019)

    Google Scholar 

  8. Dudhane, A., Murala, S.: CDNet: single image dehazing using unpaired adversarial training, pp. 1147–1155 (2019)

    Google Scholar 

  9. Dudhane, A., Murala, S.: RYF-Net: deep fusion network for single image haze removal. IEEE Trans. Image Process. 29, 628–640 (2020)

    Article  MathSciNet  Google Scholar 

  10. Chaudhary, S., Murala, S.: Deep network for human action recognition using Weber motion. Neurocomputing 367, 207–216 (2019)

    Article  Google Scholar 

  11. Engin, D., Genc, A., Ekenel, H.K.: Cycle Dehaze: enhanced cycleGAN for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018

    Google Scholar 

  12. Hambarde, P., Dudhane, A., Patil, P.W., Murala, S., Dhall, A.: Depth estimation from single image and semantic prior. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 1441–1445. IEEE (2020)

    Google Scholar 

  13. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  14. Patil, P.W., Dudhane, A., Kulkarni, A., Murala, S., Gonde, A.B., Gupta, S.: An unified recurrent video object segmentation framework for various surveillance environments. IEEE Trans. Image Process. 30, 7889–7902 (2021)

    Article  Google Scholar 

  15. Patil, P.W., Biradar, K.M., Dudhane, A., Murala, S.: An end-to-end edge aggregation network for moving object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8149–8158 (2020)

    Google Scholar 

  16. Chaudhary, S., Murala, S.: Depth-based end-to-end deep network for human action recognition. IET Comput. Vis. 13(1), 15–22 (2019)

    Article  Google Scholar 

  17. Kim, J.H., Jang, W.D., Park, Y., HahkLee, D., Sim, J.Y., Kim, C.S.: Temporally x real-time video dehazing. In: 2012 19th IEEE International Conference on Image Processing, pp. 969–972. IEEE (2012)

    Google Scholar 

  18. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  19. Phutke, S.S., Murala, S.: Diverse receptive field based adversarial concurrent encoder network for image inpainting. IEEE Signal Process. Lett. 28, 1873–1877 (2021)

    Article  Google Scholar 

  20. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10

    Chapter  Google Scholar 

  21. Ren, W., et al.: Gated fusion network for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3253–3261 (2018)

    Google Scholar 

  22. Chaudhary, S., Dudhane, A., Patil, P., Murala, S.: Pose guided dynamic image network for human action recognition in person centric videos. In: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8 (2019). https://doi.org/10.1109/AVSS.2019.8909835

  23. Tan, R.: Visibility in bad weather from a single image (2008)

    Google Scholar 

  24. Yang, D., Sun, J.: Proximal DehazeNet: a prior learning-based deep network for single image dehazing. In: Proceedings of the European Conference on Computer Vision (ECCV), September 2018

    Google Scholar 

  25. Chaudhary, S.: Deep learning approaches to tackle the challenges of human action recognition in videos. Dissertation (2019)

    Google Scholar 

  26. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  27. Zhang, H., Sindagi, V., Patel, V.M.: Multi-scale single image dehazing using perceptual pyramid deep network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1015–101509 (2018)

    Google Scholar 

  28. Zhang, J., Li, L., Zhang, Y., Yang, G., Cao, X., Sun, J.: Video dehazing with spatial and temporal coherence. Vis. Comput. 27(6), 749–757 (2011). https://doi.org/10.1007/s00371-011-0569-8

    Article  Google Scholar 

  29. Zhang, X., Dong, H., Hu, Z., Lai, W., Wang, F., Yang, M.: Gated fusion network for joint image deblurring and super-resolution. arXiv preprint arXiv:1807.10806 (2018)

  30. Zhu, H., Peng, X., Chandrasekhar, V., Li, L., Lim, J.H.: DehazeGAN: when image dehazing meets differential programming. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 1234–1240. International Joint Conferences on Artificial Intelligence Organization (2018)

    Google Scholar 

  31. Zhu, Q., Mai, J., Shao, L.: Single image dehazing using color attenuation prior. In: BMVC. Citeseer (2014)

    Google Scholar 

  32. Zhu, L., et al.: Learning gated non-local residual for single-image rain streak removal. IEEE Trans. Circ. Syst. Video Technol. 31(6), 2147–2159 (2021). https://doi.org/10.1109/TCSVT.2020.3022707

    Article  Google Scholar 

  33. Kulkarni, A., Patil, P.W., Murala, S.: Progressive subtractive recurrent lightweight network for video deraining. IEEE Signal Process. Lett. 29, 229–233 (2022). https://doi.org/10.1109/LSP.2021.3134171

    Article  Google Scholar 

  34. Li, P., Tian, J., Tang, Y., Wang, G., Wu, C.: Model-based deep network for single image deraining. IEEE Access 8, 14036–14047 (2020). https://doi.org/10.1109/ACCESS.2020.2965545

    Article  Google Scholar 

  35. Perazzi, F., et al.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  36. Silberman, N. Fergus, R.: Indoor scene segmentation using a structured light sensor. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 601–608. IEEE (2011)

    Google Scholar 

  37. Shin, J., Park, H., Paik, J.: Region-based dehazing via dual-supervised triple-convolutional network. IEEE Trans. Multimedia 24, 245–260 (2021). https://doi.org/10.1109/TMM.2021.3050053

    Article  Google Scholar 

  38. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11908–11915 (2020). https://doi.org/10.1609/aaai.v34i07.6865

  39. Dong, H., et al.: Multi-scale boosted dehazing network with dense feature fusion, pp. 2154–2164 (2020). https://doi.org/10.1109/CVPR42600.2020.00223

  40. Chen, D., et al.: Gated context aggregation network for image dehazing and deraining, pp. 1375–1383 (2019). https://doi.org/10.1109/WACV.2019.00151

  41. Shin, J., Kim, M., Paik, J., Lee, S.: Radiance-reflectance combined optimization and structure-guided \(\ell _0\)-norm for single image dehazing. IEEE Trans. Multimedia 22(1), 30–44 (2020). https://doi.org/10.1109/TMM.2019.2922127

    Article  Google Scholar 

  42. Isola, P., et al.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976 (2017)

    Google Scholar 

  43. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR arXiv:1409.1556 (2015)

  44. Dhara, S.K., Roy, M., Sen, D., Biswas, P.K.: Color cast dependent image dehazing via adaptive airlight refinement and non-linear color balancing. IEEE Trans. Circuits Syst. Video Technol. 31(5), 2076–2081 (2021). https://doi.org/10.1109/TCSVT.2020.3007850

    Article  Google Scholar 

  45. Zhu, Z., Wei, H., Hu, G., Li, Y., Qi, G., Mazur, N.: A novel fast single image dehazing algorithm based on artificial multiexposure image fusion. IEEE Trans. Instrum. Meas. 70, 1–23 (2021). https://doi.org/10.1109/TIM.2020.3024335. Art no. 5001523

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay M. Galshetwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galshetwar, V.M., Patil, P.W., Chaudhary, S. (2022). Single Frame-Based Video Dehazing with Adversarial Learning. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics