Skip to main content

Comparative Analysis of Machine Learning and Deep Learning Models for Ship Classification from Satellite Images

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Abstract

The automatic detection of the ship from satellite image analysis is the limelight of research in recent years due to its widespread applications. In this paper, a handful of traditional machine learning and deep learning models are compared based on their performance to classify the satellite images available in the public repository as a ship or other categories. The Support Vector Machine(SVM), Decision Trees, Random Forest, K-Nearest Neighbor (KNN), Gaussian Naive Bayes (GaussianNB), and Logistic Regression are machine learning models used in the present work. Histogram of Gradient (HoG) features are used as feature descriptors considering the diverse size and shape of ships in the satellite image dataset. Transfer learning is applied using the deep learning models namely, Inception and ResNet, that are fine-tuned for various learning rates and optimizers. The meticulous experimentation carried out reveals that traditional machine learning performs well when trained and tested on a single dataset. However, there is a drastic change in the performance of machine learning models when tested on a different ship dataset. The results show that the deep learning models have better feature detection and thus have better performance when transfer learning is used on various datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lázaro, F., Raulefs, R., Wang, W., Clazzer, F., Plass, S.: VHF data exchange system (VDES): an enabling technology for maritime communications. CEAS Space J. 11(1), 55–63 (2019). https://doi.org/10.1007/s12567-018-0214-8

    Article  Google Scholar 

  2. Tetreault, B.: Use of the automatic identification system (AIS) for maritime domain awareness (MDA). In: Proceedings of OCEANS 2005 MTS/IEEE, vol. 2, pp. 1590–1594 (2005)

    Google Scholar 

  3. Ford, J.H., Peel, D., Kroodsma, D., Hardesty, B.D., Rosebrock, U., Wilcox, C.: Detecting suspicious activities at sea based on anomalies in automatic identification systems transmissions. PLOS ONE 13(8), e0201640 (2018). https://doi.org/10.1371/journal.pone.0201640

    Article  Google Scholar 

  4. Kamirul, K., Hasbi, W., Hakim, P., Syafrudin, A.H.: Automatic ship recognition chain on satellite multispectral imagery. IEEE Access 8, 221918–221931 (2020). https://doi.org/10.1109/ACCESS.2020.3042702

    Article  Google Scholar 

  5. Probst, P., Boulesteix, A.L., Bischl, B.: Tunability: importance of hyperparameters of machine learning algorithms. J. Mach. Learn. Res. 20(53), 1–32 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Sarker, I.: Machine learning: algorithms, real-world applications and research directions. SN Comput. Sci. 2, 160 (2021)

    Article  Google Scholar 

  7. Yang, G., Li, B., Ji, S., Gao, F., Xu, Q.: Ship detection from optical satellite images based on sea surface analysis. IEEE Geosci. Remote Sens. Lett. 11(3), 641–645 (2014). https://doi.org/10.1109/LGRS.2013.2273552

    Article  Google Scholar 

  8. Chua, M., Aha, D.W., Auslander, B., Gupta, K., Morris, B.: Comparison of object detection algorithms on maritime vessels. Tech. rep, Naval Research Lab, Washington, D.C. (2014)

    Google Scholar 

  9. Mohamed, N.A., Zulkifley, M.A., Zaki, W.M.D.W., Hussain, A.: An automated glaucoma screening system using cup-to-disc ratio via simple linear iterative clustering superpixel approach. Biomed. Signal Process. Control 53, 101454 (2019). https://doi.org/10.1016/j.bspc.2019.01.003

    Article  Google Scholar 

  10. Cordova, A.W.A., Quispe, W.C., Inca, R.J.C., Choquehuayta, W.N., Gutierrez, E.C.: New approaches and tools for ship detection in optical satellite imagery. J. Phys. Conf. Ser. 1642, 012003 (2020). https://doi.org/10.1088/1742-6596/1642/1/012003

    Article  Google Scholar 

  11. Li, Z., Zhao, L., Han, X., Pan, M.: Lightweight ship detection methods based on yolov3 and densenet. Math. Prob. Eng. 2020, 4813183 (2020). https://doi.org/10.1155/2020/4813183

    Article  Google Scholar 

  12. Liu, C., Zhu, W.: An improved algorithm for ship detection in SAR images based on CNN. In: Pan, Z., Hei, X. (eds.) Twelfth International Conference on Graphics and Image Processing (ICGIP 2020), vol. 11720, pp. 63–71. International Society for Optics and Photonics, SPIE (2021). https://doi.org/10.1117/12.2589421.

  13. Stofa, M.M., Zulkifley, M.A., Zaki, S.Z.M.: A deep learning approach to ship detection using satellite imagery. IOP Conf. Ser. Earth Environ. Sci. 540, 012049 (2020). https://doi.org/10.1088/1755-1315/540/1/012049

    Article  Google Scholar 

  14. Wang, Y., Ning, X., Leng, B., Fu, H.: Ship detection based on deep learning. In: 2019 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 275–279 (2019). https://doi.org/10.1109/ICMA.2019.8816265

  15. Gallego, A.J., Pertusa, A., Gil, P.: Automatic ship classification from optical aerial images with convolutional neural networks. Remote Sens. 10(4) (2018). https://doi.org/10.3390/rs10040511

  16. Liu, Y., Cui, H.Y., Kuang, Z., Li, G.: Ship detection and classification on optical remote sensing images using deep learning. ITM Web Conf. 12, 05012 (2017). https://doi.org/10.1051/itmconf/20171205012

    Article  Google Scholar 

  17. Zou, Z., Shi, Z.: Ship detection in spaceborne optical image with SVD networks. IEEE Trans. Geosci. Remote Sens. 54(10), 5832–5845 (2016). https://doi.org/10.1109/TGRS.2016.2572736

    Article  Google Scholar 

  18. Tang, J., Deng, C., Huang, G.B., Zhao, B.: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53(3), 1174–1185 (2015). https://doi.org/10.1109/TGRS.2014.2335751

    Article  Google Scholar 

  19. Rhammell. Ships in satellite imagery-v1 (2018). https://www.kaggle.com/rhammell/ships-in-satellite-imagery/metadata. Accessed 06 Apr 2021

  20. Airbus. Airbus ship detection challenge (2018). https://www.kaggle.com/c/airbus-ship-detection/overview. Accessed 25 Apr 2021

  21. Eum, H., Bae, J., Yoon, C., Kim, E.: Ship detection using edge-based segmentation and histogram of oriented gradient with ship size ratio. IJFIS 15, 251–259 (2015). https://doi.org/10.5391/IJFIS.2015.15.4.251

    Article  Google Scholar 

  22. Evgeniou, T., Pontil, M.: Support vector machines: theory and applications. In: Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds.) ACAI 1999. LNCS (LNAI), vol. 2049, pp. 249–257. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44673-7_12

  23. Peng, C.Y.J., Lee, K.L., Ingersoll, G.M.: An introduction to logistic regression analysis and reporting. J. Educ. Res. 96(1), 3–14 (2002). https://doi.org/10.1080/00220670209598786

    Article  Google Scholar 

  24. Kaviani, P., Dhotre, S.: Short survey on Naive Bayes algorithm. Int. J. Adv. Res. Comput. Sci. Manag. 4 (2017)

    Google Scholar 

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CVPR 2016, 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

    Article  Google Scholar 

  26. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. CVPR2016 (2016). https://doi.org/10.1109/CVPR.2016.308

  27. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. arXiv preprint arXiv:1608.06993 (2016)

  28. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017). https://doi.org/10.1109/ICCV.2017.74

Download references

Acknowledgements

Dr. P. Jidesh wish to thank the Science and Engineering Research Board, India for providing financial support under the research grant No. CRG/2020/000476. The other authors (Mr. Abhinaba and Ms. Smitha) wish to thank Ministry of Education (MoE) for providing financial support under the scholarship scheme to carryout the research at National Institute of Technology Karnataka, Surathkal. Authors would like to acknowledge the creators of the datasets [19, 20] mentioned in this paper and making their dataset publicly available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jidesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hazarika, A., Jidesh, P., Smitha, A. (2022). Comparative Analysis of Machine Learning and Deep Learning Models for Ship Classification from Satellite Images. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics