Abstract
Predicting regions of interest, otherwise called salient regions tend to top out with the rise of deep learning techniques. Although convolutional neural networks have evaded the domain to let it reach newer heights, there still exists room for improvement on how to integrate the hierarchical features efficiently. In fact, the rich features at multiple spatial scales are found to be powerful towards accurate prediction. This paper proposes a novel end-to-end visual saliency prediction technique, based on DenseASPP (Dense Atrous Spatial Pyramid Pooling) and residual connections. It enriches the multi-scale contextual features via DenseASPP module, that gathers information via dense connections across multiple scales. Further, incorporation of residual connections between encoder and decoder blocks allow learning of more robust features that can result in better prediction. The model is trained on the largest dataset for saliency prediction, SALICON and experimental results on two public datasets, OSIE and PASCAL-S verify the effectiveness of the proposed framework compared with state-of-the-art results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, pp. 155–162 (2005)
Bruce, N.D., Catton, C., Janjic, S.: A deeper look at saliency: feature contrast, semantics, and beyond. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 516–524. IEEE, Las Vegas (2016)
Bruce, N.D., Tsotsos, J.K.: Saliency, attention, and visual search: an information theoretic approach. J. Vis. 9(3), 5 (2009)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional Nets, Atrous Convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Cornia, M., Baraldi, L., Serra, G., Cucchiara, R.: A deep multi-level network for saliency prediction. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3488–3493. IEEE (2016)
Cornia, M., Baraldi, L., Serra, G., Cucchiara, R.: Predicting human eye fixations via an LSTM-based saliency attentive model. IEEE Trans. Image Process. 27(10), 5142–5154 (2018)
Dodge, S.F., Karam, L.J.: Visual saliency prediction using a mixture of deep neural networks. IEEE Trans. Image Process. 27(8), 4080–4090 (2018)
Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vis. 13(4), 11–11 (2013)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Garcia-Diaz, A., Leboran, V., Fdez-Vidal, X.R., Pardo, X.M.: On the relationship between optical variability, visual saliency, and eye fixations: a computational approach. J. Vis. 12(6), 17 (2012)
Ghariba, B.M., Shehata, M.S., McGuire, P.: A novel fully convolutional network for visual saliency prediction. PeerJ. Comput. Sci. 6, e280 (2020)
Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2011)
Harel, J., Koch, C., Perona, P.: Graph-based visual saliency (2007)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, S., Borji, A., Mi, Y., Pugeault, N.: What catches the eye? Visualizing and understanding deep saliency models. arXiv preprint arXiv:1803.05753 (2018)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)
Jiang, L., Wang, Z., Xu, M., Wang, Z.: Image saliency prediction in transformed domain: a deep complex neural network method. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8521–8528 (2019)
Jiang, M., Huang, S., Duan, J., Zhao, Q.: SALICON: saliency in context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1072–1080 (2015)
Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2106–2113. IEEE (2009)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)
Kroner, A., Senden, M., Driessens, K., Goebel, R.: Contextual encoder-decoder network for visual saliency prediction. Neural Netw. 129, 261–270 (2020)
Kruthiventi, S.S., Ayush, K., Babu, R.V.: DeepFix: a fully convolutional neural network for predicting human eye fixations. IEEE Trans. Image Process. 26(9), 4446–4456 (2017)
Kruthiventi, S.S., Gudisa, V., Dholakiya, J.H., Babu, R.V.: Saliency unified: a deep architecture for simultaneous eye fixation prediction and salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5781–5790 (2016)
Kümmerer, M., Theis, L., Bethge, M.: Deep Gaze I: boosting saliency prediction with feature maps trained on ImageNet. arXiv preprint arXiv:1411.1045 (2014)
Li, P., Xing, X., Xu, X., Cai, B., Cheng, J.: Attention-aware concentrated network for saliency prediction. Neurocomputing 429, 199–214 (2021)
Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2014)
Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, N., Han, J.: A deep spatial contextual long-term recurrent convolutional network for saliency detection. IEEE Trans. Image Process. 27(7), 3264–3274 (2018)
Liu, N., Han, J., Zhang, D., Wen, S., Liu, T.: Predicting eye fixations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 362–370 (2015)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Pan, J., Sayrol, E., Giro-i Nieto, X., McGuinness, K., O’Connor, N.E.: Shallow and deep convolutional networks for saliency prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 598–606 (2016)
Reddy, N., Jain, S., Yarlagadda, P., Gandhi, V.: Tidying deep saliency prediction architectures. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10241–10247. IEEE (2020)
Ren, D., Wen, X., Jia, T., Chen, J., Li, Z.: Saliency detection via cross-scale deep inference. J. Vis. Commun. Image Represent. 75, 103031 (2021)
Riche, N., Duvinage, M., Mancas, M., Gosselin, B., Dutoit, T.: Saliency and human fixations: state-of-the-art and study of comparison metrics. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1153–1160 (2013)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Vig, E., Dorr, M., Cox, D.: Large-scale optimization of hierarchical features for saliency prediction in natural images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2798–2805 (2014)
Wang, W., Shen, J.: Deep visual attention prediction. IEEE Trans. Image Process. 27(5), 2368–2378 (2017)
Wang, Z., Liu, Z., Wei, W., Duan, H.: SALED: saliency prediction with a pithy encoder-decoder architecture sensing local and global information. Image Vis. Comput. 109, 104149 (2021)
Xu, J., Jiang, M., Wang, S., Kankanhalli, M.S., Zhao, Q.: Predicting human gaze beyond pixels. J. Vis. 14(1), 28–28 (2014)
Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3684–3692 (2018)
Yang, S., Lin, G., Jiang, Q., Lin, W.: A dilated inception network for visual saliency prediction. IEEE Trans. Multimedia 22(8), 2163–2176 (2019)
Zabihi, S., Tavakoli, H.R., Borji, A.: A compact deep architecture for real-time saliency prediction. arXiv preprint arXiv:2008.13227 (2020)
Zhang, J., Sclaroff, S.: Saliency detection: a Boolean map approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 153–160 (2013)
Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: SUN: a Bayesian framework for saliency using natural statistics. J. Vis. 8(7), 32–32 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Abraham, S.E., Kovoor, B.C. (2022). DenseASPP Enriched Residual Network Towards Visual Saliency Prediction. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-11349-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11348-2
Online ISBN: 978-3-031-11349-9
eBook Packages: Computer ScienceComputer Science (R0)