Skip to main content

An Architecture for Attesting to the Provenance of Ontologies Using Blockchain Technologies

  • Conference paper
  • First Online:
Business Modeling and Software Design (BMSD 2022)

Abstract

When applying ontologies in practice, human and machine agents need to ensure that their provenance is trustworthy and it can be relied upon the contained concepts. This is particularly crucial for sensitive tasks such as in medical diagnostics or for safety-criticial applications. In this paper, we propose an architecture for the decentralized attestation and verification of the integrity and validity of ontologies using blockchain technologies. Blockchains are an immutable, tamper-resistant and decentralized storage where all transactions are digitally signed. Thus, they permit tracing the provenance of concepts and identify responsible actors. For a proof-of-concept we extended the WebProtégé editor so that domain experts can attest to the provenance of ontologies via their Ethereum blockchain account, subsequently permitting other actors to reason about the validity and integrity of ontologies. For evaluating the applicability of this approach, we explore a use case in the biomedical domain and perform a cost analysis for the public Ethereum blockchain. It is shown that the attestation procedure is technically feasible and offers a new strategy for placing trust in ontologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Validators are sometimes also called miners.

  2. 2.

    The visitor implementation is found here: http://owlcs.github.io/owlapi/apidocs_4/org/semanticweb/owlapi/util/HashCode.html.

  3. 3.

    A crypto wallet & gateway to blockchain apps - https://metamask.io/.

  4. 4.

    Filtering by size on BioPortal orders ontologies by number of classes.

  5. 5.

    London Upgrade – https://ethereum.org/en/history/#london.

  6. 6.

    Etherscan – https://etherscan.io.

  7. 7.

    See https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/.

  8. 8.

    Avalanche - https://www.avax.network/.

  9. 9.

    Bloxberg infrastructure - https://bloxberg.org/.

References

  1. Aebeloe, C., Montoya, G., Hose, K.: ColChain: collaborative linked data networks. In: WWW 2021: The Web Conference 2021, Virtual Event/Ljubljana, Slovenia, 19–23 April 2021, pp. 1385–1396. ACM/IW3C2 (2021). https://doi.org/10.1145/3442381.3450037

  2. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts and DApps. O’Reilly Media, Sebastopol (2018)

    Google Scholar 

  3. Atencia, M., Euzenat, J., Pirrò, G., Rousset, M.-C.: Alignment-based trust for resource finding in semantic P2P networks. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 51–66. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_4

    Chapter  Google Scholar 

  4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)

    Article  Google Scholar 

  5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference. Technical report, Team Keccak, January 2011. https://keccak.team/files/Keccak-reference-3.0.pdf

  6. Bolstad, W.M., Curran, J.M.: Displaying and summarizing data. In: Introduction to Bayesian Statistics, 3rd edn., pp. 31–57. Wiley (2016)

    Google Scholar 

  7. Bonatti, P., Duma, C., Olmedilla, D., Shahmehri, N.: An integration of reputation-based and policy-based trust management. Networks 2(14), 10 (2007)

    Google Scholar 

  8. Braun-Dubler, N., et al.: Blockchain: Capabilities, Economic Viability, and the Socio-Technical Environment. vdf AG of ETH Zurich (2020)

    Google Scholar 

  9. Buterin, V.: A Next-Generation Smart Contract and Decentralized Application Platform (2013). https://ethereum.org/en/whitepaper/

  10. Cano-Benito, J., Cimmino, A., García-Castro, R.: Towards blockchain and semantic web. In: Abramowicz, W., Corchuelo, R. (eds.) BIS 2019. LNBIP, vol. 373, pp. 220–231. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36691-9_19

    Chapter  Google Scholar 

  11. Carroll, J.J.: Signing RDF graphs. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 369–384. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39718-2_24

    Chapter  Google Scholar 

  12. Curty, S.: WebProtégé Attestation: Prototype source code archive (2021). https://doi.org/10.5281/zenodo.5765038

  13. Curty, S., Fill, H.G., Gonçalves, R.S., Musen, M.A.: A WebProtégé plugin for attesting to the provenance of ontologies on the Ethereum blockchain. In: Proceedings of the ISWC 2021 Posters, Demos and Industry Tracks. CEUR Workshop Proceedings, vol. 2980 (2021). http://ceur-ws.org/Vol-2980/paper329.pdf

  14. Curty, S., Härer, F., Fill, H.G.: Towards the comparison of blockchain-based applications using enterprise modeling. In: Lukyanenko, R., Samuel, B.M., Sturm, A. (eds.) Proceedings of the ER Demos and Posters 2021. CEUR Workshop Proceedings, vol. 2958, pp. 31–36 (2021). http://ceur-ws.org/Vol-2958/paper6.pdf

  15. Dang, Q.H.: Secure hash standard. Technical report, NIST FIPS 180-4, National Institute of Standards and Technology, July 2015. https://doi.org/10.6028/NIST.FIPS.180-4

  16. Fill, H.G.: Applying the concept of knowledge blockchains to ontologies. In: AAAI 2019 Spring Symposium. CEUR-WS.org (2019)

    Google Scholar 

  17. Fill, H., Härer, F.: Supporting trust in hybrid intelligence systems using blockchains. In: AAAI 2020 Spring Symposium. CEUR-WS.org (2020)

    Google Scholar 

  18. Fill, H.G., Meier, A.: Blockchain Kompakt. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-658-27461-0

    Book  Google Scholar 

  19. Fokoue, A., Srivatsa, M., Young, R.: Assessing trust in uncertain information. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 209–224. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_14

    Chapter  Google Scholar 

  20. Gamma, E., Vlissides, J., Helm, R., Johnson, R.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley (1995)

    Google Scholar 

  21. Grigoriu, A., Zaveri, A., Weiss, G., Dumontier, M.: Siena: semi-automatic semantic enhancement of datasets using concept recognition. J. Biomed. Semant. 12(1), 1–12 (2021)

    Article  Google Scholar 

  22. Härer, F., Fill, H.: Decentralized attestation of conceptual models using the Ethereum blockchain. In: IEEE CBI Conference, vol. 01, pp. 104–113 (2019)

    Google Scholar 

  23. van Harmelen, F., ten Teije, A.: A boxology of design patterns for hybrid learning and reasoning systems. J. Web Eng. 18(1–3), 97–124 (2019)

    Article  Google Scholar 

  24. Hector, U.R., Boris, C.L.: BLONDiE: blockchain ontology with dynamic extensibility. arXiv:2008.09518 [cs], August 2020

  25. Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Preferential reasoning on a web of trust. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 368–382. Springer, Heidelberg (2005). https://doi.org/10.1007/11574620_28

    Chapter  Google Scholar 

  26. Horridge, M.: OWL API main repository (2020). https://github.com/owlcs/owlapi

  27. Horridge, M., Gonçalves, R.S., Nyulas, C.I., Tudorache, T., Musen, M.A.: Webprotégé 3.0 - collaborative OWL ontology engineering in the cloud. In: ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks, vol. 2180. CEUR-WS.org (2018)

    Google Scholar 

  28. Horridge, M., Gonçalves, R.S., Nyulas, C.I., Tudorache, T., Musen, M.A.: WebProtégé: a cloud-based ontology editor. In: World Wide Web Conference, pp. 686–689. ACM (2019)

    Google Scholar 

  29. Kasten, A., Scherp, A., Schauß, P.: A framework for iterative signing of graph data on the web. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 146–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6_11

    Chapter  Google Scholar 

  30. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  31. Martin, A., et al. (eds.): AAAI 2022 Spring Symposium on Machine Learning and Knowledge Engineering for Hybrid Intelligence, Stanford University, USA, 21–23 March 2022, CEUR Workshop Proceedings, vol. 3121 (2022). http://ceur-ws.org/Vol-3121

  32. Martínez-Romero, M., Jonquet, C., O’Connor, M.J., Graybeal, J., Pazos, A., Musen, M.A.: NCBO ontology recommender 2.0: an enhanced approach for biomedical ontology recommendation. J. Biomed. Semant. 8(1), 21 (2017)

    Google Scholar 

  33. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32

    Chapter  Google Scholar 

  34. Motik, B., et al.: OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax, 2nd edn., December 2012. https://www.w3.org/TR/owl2-syntax/

  35. Musen, M.A.: The protégé project: a look back and a look forward. AI Matters 1(4), 4–12 (2015)

    Article  Google Scholar 

  36. Nolle, A., Chekol, M.W., Meilicke, C., Nemirovski, G., Stuckenschmidt, H.: Automated fine-grained trust assessment in federated knowledge bases. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 490–506. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_29

    Chapter  Google Scholar 

  37. Noy, N.F., et al.: BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 37, W170–W173 (2009)

    Article  Google Scholar 

  38. Ochs, C., Perl, Y., Geller, J., Arabandi, S., Tudorache, T., Musen, M.A.: An empirical analysis of ontology reuse in BioPortal. J. Biomed. Inform. 71, 165–177 (2017)

    Article  Google Scholar 

  39. O’Hara, K., Alani, H., Kalfoglou, Y., Shadbolt, N.: Trust strategies for the semantic web. In: Proceedings of the ISWC*04 Workshop on Trust, Security, and Reputation on the Semantic Web. CEUR, vol. 127 (2004)

    Google Scholar 

  40. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39718-2_23

    Chapter  Google Scholar 

  41. Rubinstein-Salzedo, S.: The RSA cryptosystem. In: Rubinstein-Salzedo, S. (ed.) Cryptography. SUMS, pp. 113–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94818-8_12

    Chapter  MATH  Google Scholar 

  42. Sayers, C., Karp, A.: Computing the digest of an RDF graph. Technical report, HP Laboratories Palo Alto (2004). https://www.hpl.hp.com/techreports/2003/HPL-2003-235R1.pdf. Accessed 09 Apr 2021

  43. Schenk, S.: On the semantics of trust and caching in the semantic web. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 533–549. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_34

    Chapter  Google Scholar 

  44. Simperl, E., Luczak-Rösch, M.: Collaborative ontology engineering: a survey. Knowl. Eng. Rev. 29(1), 101–131 (2014). https://doi.org/10.1017/S0269888913000192

    Article  Google Scholar 

  45. Sopek, M., et al.: GraphChain: a distributed database with explicit semantics and chained RDF graphs. In: The Web Conference 2018, pp. 1171–1178. ACM (2018)

    Google Scholar 

  46. Sutton, A., Samavi, R.: Integrity proofs for RDF graphs. Open J. Semant. Web 6, 1–18 (2019)

    Google Scholar 

  47. Third, A., Domingue, J.: Linked data indexing of distributed ledgers. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 1431–1436. International WWW Conferences Steering Committee, April 2017. https://doi.org/10.1145/3041021.3053895

  48. Le-Tuan, A., Hingu, D., Hauswirth, M., Le-Phuoc, D.: Incorporating blockchain into RDF store at the lightweight edge devices. In: Acosta, M., Cudré-Mauroux, P., Maleshkova, M., Pellegrini, T., Sack, H., Sure-Vetter, Y. (eds.) SEMANTiCS 2019. LNCS, vol. 11702, pp. 369–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33220-4_27

    Chapter  Google Scholar 

  49. Tudorache, T., Noy, N.F., Tu, S., Musen, M.A.: Supporting collaborative ontology development in Protégé. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 17–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_2

    Chapter  Google Scholar 

  50. Tudorache, T., Vendetti, J., Noy, N.: Web-Protege: a lightweight OWL ontology editor for the web. In: Fifth OWLED Workshop on OWL: Experiences and Directions, January 2008

    Google Scholar 

  51. Tummarello, G., Morbidoni, C., Puliti, P., Piazza, F.: Signing individual fragments of an RDF graph. In: Special Interest Tracks and Posters of the 14th International Conference on World Wide Web - WWW, pp. 1020–1021. ACM, January 2005

    Google Scholar 

  52. Whetzel, P.L., et al.: BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Res. 39(Web-Server-Issue), 541–545 (2011). https://doi.org/10.1093/nar/gkr469

Download references

Acknowledgments

The research on this paper has been partially financed by the Swiss National Science Fund grant number 196889.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Curty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Curty, S., Fill, HG., Gonçalves, R.S., Musen, M.A. (2022). An Architecture for Attesting to the Provenance of Ontologies Using Blockchain Technologies. In: Shishkov, B. (eds) Business Modeling and Software Design. BMSD 2022. Lecture Notes in Business Information Processing, vol 453. Springer, Cham. https://doi.org/10.1007/978-3-031-11510-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11510-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11509-7

  • Online ISBN: 978-3-031-11510-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics