Skip to main content

Linked Data as Medium for Stigmergy-based Optimization and Coordination

  • Conference paper
  • First Online:
Software Technologies (ICSOFT 2021)

Abstract

Optimization through coordination of processes in complex systems is a classic challenge in AI research. A specific class of algorithms takes for this inspiration from biology. Such bio-inspired algorithms achieve coordination and optimization by transferring, for example, concepts of communication in insect swarms to typical planner problems in the AI domain. Among those bio-inspired algorithms, an often used concept is the concept of stigmergy. In a stigmergic system, actions carried out by members of the swarm (or, in AI domains, by single agents), leave traces in the environment that subsequently work as incentive for following agents. While there is a noticable uptake of stigmergy as coordination mechanism in AI, we see the common understanding of one core element of stigmergic systems still lacking: The notion of the shared digital stigmergic medium, in which agents carry out their actions, and in which traces left by these actions manifest. Given that the medium is in literature considered the element “that underlies the true power of stigmergy”, we believe that a well-defined, properly modelled, and technically sound digital medium is essential for correct, understandable, and transferable stigmergic algorithms. We therefore suggest the use of read-write Linked Data as underlying medium for decentralized stigmergic systems. We first derive a set of core requirements that we see crucial for stigmergic digital media from relevant literature. We then discuss read-write Linked Data as suitable choice by showing that it fulfills given the requirements. We conclude with two practical application examples from the domains of optimization and coordination respectively.

This work has been supported by the German Federal Ministry for Education and Research (BMBF) as part of the MOSAIK project (grant no. 01IS18070-C).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    RDF 1.1 Primer document (Jan. 2021): https://www.w3.org/TR/rdf11-primer/.

  2. 2.

    https://www.w3.org/standards/semanticweb/data.

  3. 3.

    W3C SPARQL 1.1 Query Language Recommendation (Apr. 2021): https://www.w3.org/TR/sparql11-query/.

  4. 4.

    SPARQL Federated Queries: (Apr.2021): https://www.w3.org/TR/sparql11-federated-query/.

  5. 5.

    https://www.w3.org/TR/rdf-sparql-query/#rdfDataset.

  6. 6.

    http://www.dcs.st-and.ac.uk/Ëœipg/challenge/.

  7. 7.

    https://schema.org.

  8. 8.

    https://schema.org/.

  9. 9.

    https://www.w3.org/2019/wot/td.

  10. 10.

    https://github.com/aantakli/AJAN-service.

  11. 11.

    https://github.com/aantakli/AJAN-editor.

References

  1. Alfeo, A.L., Cimino, M.G., Egidi, S., Lepri, B., Vaglini, G.: A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage. IEEE Trans. Intell. Transp. Syst. 19(7), 2258–2267 (2018). https://doi.org/10.1109/TITS.2018.2817558

    Article  Google Scholar 

  2. Antakli, A., et al.: Optimized coordination and simulation for industrial human robot collaborations. In: Bozzon, A., Domínguez Mayo, F.J., Filipe, J. (eds.) WEBIST 2019. LNBIP, vol. 399, pp. 44–68. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61750-9_3

    Chapter  Google Scholar 

  3. de la Banda, M.G., Stuckey, P.J.: Dynamic programming to minimize the maximum number of open stacks. INFORMS J. Comput. 19(4), 607–617 (2007)

    Article  MathSciNet  Google Scholar 

  4. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)

    Article  Google Scholar 

  5. Binitha, S., Sathya, S.S.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. (IJSCE) 2(2), 137–151 (2012). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.811 &rep=rep1 &type=pdf

  6. Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web (ldow2008). In: Proceedings of the 17th International Conference on World Wide Web, pp. 1265–1266 (2008)

    Google Scholar 

  7. Bonabeau, E., Henaux, F., Guérin, S., Snyers, D., Kuntz, P., Theraulaz, G.: Routing in telecommunications networks with ant-like agents. Lect. Notes Comput. Sci. (including subseries Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 1437(1), 60–71 (1998). https://doi.org/10.1007/bfb0053944

    Article  Google Scholar 

  8. Charpenay, V., et al.: Mosaik: a formal model for self-organizing manufacturing systems. IEEE Pervasive Comput. 20(1), 9–18 (2020)

    Article  Google Scholar 

  9. Chiong, R.: Nature-Inspired Algorithms for Optimisation, vol. 193. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-00267-0

  10. Chopra, S., Notarstefano, G., Rice, M., Egerstedt, M.: A distributed version of the Hungarian method for multirobot assignment. IEEE Trans. Robot. 33(4), 932–947 (2017). https://doi.org/10.1109/TRO.2017.2693377

    Article  Google Scholar 

  11. Ciancarini, P., Gorrieri, R., Zavattaro, G.: Towards a calculus for generative communication. In: Najm, E., Stefani, J.-B. (eds.) Formal Methods for Open Object-based Distributed Systems. IAICT, pp. 283–297. Springer, Boston (1997). https://doi.org/10.1007/978-0-387-35082-0_21

    Chapter  Google Scholar 

  12. Cicirello, V.A., Smith, S.F.: Wasp-like agents for distributed factory coordination. Auton. Agent. Multi-Agent Syst. 8(3), 237–266 (2004). https://doi.org/10.1023/B:AGNT.0000018807.12771.60

    Article  Google Scholar 

  13. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stigmergy. Sci. Comput. Program. 187, 102345 (2020). https://doi.org/10.1016/j.scico.2019.102345

    Article  Google Scholar 

  14. Dipple, A., Raymond, K., Docherty, M.: Stigmergy within web modelling languages : positive feedback mechanisms. eprints.qut.edu.au (2013)

    Google Scholar 

  15. Dipple, A., Raymond, K., Docherty, M.: General theory of stigmergy: modelling stigma semantics. Elsevier (2014). https://doi.org/10.1016/j.cogsys.2014.02.002

  16. Dipple, A.C.: Standing on the shoulders of ants: stigmergy in the web. In: Proceedings of the 20th international conference companion on World Wide Web, pp. 355–360 (2011)

    Google Scholar 

  17. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344(2–3), 243–278 (2005)

    Article  MathSciNet  Google Scholar 

  18. Fielding, R.T., Taylor, R.N.: Architectural styles and the design of network-based software architectures, vol. 7. University of California, Irvine Irvine (2000)

    Google Scholar 

  19. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang. Syst. (TOPLAS) 7(1), 80–112 (1985)

    Article  Google Scholar 

  20. Gerevini, A.E., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. Artif. Intell. 173, 619–668 (2009). https://doi.org/10.1016/j.artint.2008.10.012

    Article  MathSciNet  MATH  Google Scholar 

  21. Heylighen, F.: Mediator evolution: a general scenario for the origin of dynamical hierarchies. Worldviews Sci. Us. (Singapore: World Sci.) 44, 45–48 (2006)

    Google Scholar 

  22. Heylighen, F.: Stigmergy as a universal coordination mechanism: components, varieties and applications. Human Stigmergy: Theoretical Developments and New Applications; Springer, New York (2015)

    Google Scholar 

  23. Jevtić, A., Gutierrez, Á., Andina, D., Jamshidi, M.: Distributed bees algorithm for task allocation in swarm of robots. IEEE Syst. J. 6(2), 296–304 (2012). https://doi.org/10.1109/JSYST.2011.2167820

    Article  Google Scholar 

  24. Kanamori, R., Takahashi, J., Ito, T.: Evaluation of traffic management strategies with anticipatory stigmergy. J. Inf. Process. 22(2), 228–234 (2014). https://doi.org/10.2197/ipsjjip.22.228

    Article  Google Scholar 

  25. Korošec, P., Šilc, J., Filipič, B.: The differential ant-stigmergy algorithm. Inf. Sci. (2012). https://doi.org/10.1016/j.ins.2010.05.002

    Article  MATH  Google Scholar 

  26. Krieger, M.J., Billeter, J.B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406(6799), 992–995 (2000). https://doi.org/10.1038/35023164

    Article  Google Scholar 

  27. Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4

    Article  Google Scholar 

  28. Lassila, O., Swick, R.R., et al.: Resource description framework (RDF) model and syntax specification (1998)

    Google Scholar 

  29. Linhares, A., Yanasse, H.H.: Connections between cutting-pattern sequencing, vlsi design, and flexible machines. Comput. Oper. Res. 29(12), 1759–1772 (2002)

    Article  Google Scholar 

  30. Lucchi, R., Millot, M., Elfers, C.: Resource oriented architecture and rest. European Communities, Assessment of impact and advantages on INSPIRE, Ispra (2008)

    Google Scholar 

  31. Matarić, M.J., Sukhatme, G.S., Østergaard, E.H.: Multi-robot task allocation in uncertain environments. Autonom. Robot. 14(2–3), 255–263 (2003)

    Article  Google Scholar 

  32. Mrugalska, B., Wyrwicka, M.K.: Towards lean production in industry 4.0. Procedia Eng. 182, 466–473 (2017)

    Google Scholar 

  33. Nguyen, A.A.: Scalable, decentralized multi-agent reinforcement learning methods inspired by stigmergy and ant colonies, pp. 1–50 (2021). http://arxiv.org/abs/2105.03546

  34. Privat, G.: Phenotropic and stigmergic webs: the new reach of networks. Univ. Access Inf. Soc. 11(3), 323–335 (2012). https://doi.org/10.1007/s10209-011-0240-1

    Article  Google Scholar 

  35. Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy: towards a framework based on agents and artifacts. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71103-2_7

    Chapter  Google Scholar 

  36. Schraudner, D., Charpenay, V.: An http/rdf-based agent infrastructure for manufacturing using stigmergy (01), 197–202 (2020). https://doi.org/10.1007/978-3-030-62327-2_34

  37. Schubotz, R., Chelli, M., Spieldenner, T.: stigld: stigmergic coordination of linked data agents. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds.) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol. 1566, pp. 174–190. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5_13

  38. Spieldenner., T., Chelli., M.: Linked data as stigmergic medium for decentralized coordination. In: Proceedings of the 16th International Conference on Software Technologies - ICSOFT, pp. 347–357. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010518003470357

  39. Tzanetos, A., Fister, I., Jr., Dounias, G.: A comprehensive database of nature-inspired algorithms. Data Brief 31, 105792 (2020)

    Article  Google Scholar 

  40. Valckenaers, P., Hadeli, Germain, B.S., Verstraete, P., Van Brussel, H.: Mas coordination and control based on stigmergy. Comput. Ind. 58(7), 621–629 (2007). https://doi.org/10.1016/j.compind.2007.05.003

  41. Yu, X., Cheng, T.: Research on a stigmergy-driven & MAS-based method of modeling intelligent system, pp. 1042–1047 (2020). https://doi.org/10.1109/cisp-bmei51763.2020.9263567

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Spieldenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spieldenner, T., Chelli, M. (2022). Linked Data as Medium for Stigmergy-based Optimization and Coordination. In: Fill, HG., van Sinderen, M., Maciaszek, L.A. (eds) Software Technologies. ICSOFT 2021. Communications in Computer and Information Science, vol 1622. Springer, Cham. https://doi.org/10.1007/978-3-031-11513-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11513-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11512-7

  • Online ISBN: 978-3-031-11513-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics