Abstract
Organizational data science projects provide organizations with evidence-based business intelligence to improve their business processes (BPs). They require methodological guidance and tool support to deal with the complexity of the socio-technical system that supports the organization’s daily operations. This system is usually composed of distributed infrastructures integrating heterogeneous technologies enacting BPs and connecting devices, people, and data. Obtaining knowledge from this context is challenging since it requires a unified view capturing all the pieces of data consistently for applying both process mining and data mining techniques to get a complete understanding of the BPs execution. We have presented the PRICED framework in previous works, which defines a general strategy for performing data science projects. In this paper, we propose a methodology with phases, disciplines, activities, roles, and artifacts, providing guidance and support to navigate from getting the execution data, through its integration and quality assessment, to mining and analyzing it to find improvement opportunities.
Supported by project “Minería de procesos y datos para la mejora de procesos en las organizaciones” funded by Comisión Sectorial de Investigación Científica, Universidad de la República, Uruguay.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd Edn. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49851-4
Artus, A., Borges, A., Calegari, D., Delgado, A.: Integrated process data and organizational data analysis for business process improvement. In: Golfarelli, M., Wrembel, R., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2021. LNCS, vol. 12925, pp. 207–215. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86534-4_19
Batini, C., Scannapieco, M.: Data and Information Quality. DSA, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24106-7
Betancor, F., Pérez, F., Marotta, A., Delgado, A.: Business process and organizational data quality model (BPODQM) for integrated process and data mining. In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins, P., Pérez-Castillo, R. (eds.) QUATIC 2021. CCIS, vol. 1439, pp. 431–445. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85347-1_31
Birukou, A., D’Andrea, V., Leymann, F., Serafinski, J., Silveira, P., Strauch, S., Tluczek, M.: An integrated solution for runtime compliance governance in SOA. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 122–136. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17358-5_9
Bose, R.P.J.C., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining results? In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 127–134 (2013)
Brachman, R.J., Anand, T.: The process of knowledge discovery in databases. In: Advances in Knowledge Discovery and Data Mining, pp. 37–57. MIT Press, Cambridge (1996)
Calegari, D., Delgado, A., Artus, A., Borges, A.: Integration of business process and organizational data for evidence-based business intelligence. CLEI Electron. J. 24(2), 7:1-7:19 (2021)
Chang, J.: Business Process Management Systems: Strategy and Implementation. CRC Press, Boca Raton (2016)
Cristalli, E., Serra, F., Marotta, A.: Data quality evaluation in document oriented data stores. In: Woo, C., Lu, J., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11158, pp. 309–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01391-2_35
Delgado, A., Calegari, D.: Towards a unified vision of business process and organizational data. In: XLVI Latin American Computing Conference (CLEI), pp. 108–117. IEEE (2020)
Delgado, A., Calegari, D.: Discovery and analysis of e-government business processes with process mining: a case study. In: 55th Hawaii International Conference on System Sciences, (HICSS) (2022)
Delgado, A., Calegari D., Arrigoni A.: Towards a generic BPMS user portal definition for the execution of business processes. In: XLII Latin American Computer Conference - Selected Papers, CLEI 2016 Selected Papers, Valparaiso, Chile, 10–14 October 2016, pp. 39–59. Elsevier (2016)
Delgado, A., Calegari, D., Marotta, A., González, L., Tansini, L.: A methodology for integrated process and data mining and analysis towards evidence-based process improvement. In: Proceedings of the 16th International Conference on Software Technologies (ICSOFT), pp. 426–437. ScitePress (2021)
Delgado, A., Marotta, A., González, L., Tansini, L., Calegari, D.: Towards a data science framework integrating process and data mining for organizational improvement. In: 15th International Conference on Software Technologies (ICSOFT), pp. 492–500. ScitePress (2020)
Delgado, A., Weber, B., Ruiz, F., de Guzmán, I.G.R., Piattini, M.: An integrated approach based on execution measures for the continuous improvement of business processes realized by services. Inf. Softw. Technol. 56(2), 134–162 (2014)
Dumas, M., van der Aalst, W.M., ter Hofstede, A.H.: Process-Aware Information Systems: Bridging People and Software through Process Technology. Wiley, Hoboken (2005)
van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_19
González, L., Delgado, A.: Towards compliance requirements modeling and evaluation of e-government inter-organizational collaborative business processes. In: 54th Hawaii International Conference on System Sciences, (HICSS), pp. 1–10. ScholarSpace (2021)
González, L., Delgado, A.: Compliance requirements model for collaborative business process and evaluation with process mining. In: XLVII Latin American Computing Conference (CLEI) (2021)
Hashmi, M., Governatori, G., Lam, H.P., Wynn, M.T.: Are we done with business process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1), 79–133 (2018)
Hecht, R., Jablonski, S.: Nosql evaluation: a use case oriented survey. In: 2011 International Conference on Cloud and Service Computing, pp. 336–341 (2011)
IEEE: Task Force on Data Science and Advanced Analytics. http://www.dsaa.co/
IEEE: IEEE standard for extensible event stream (XES) for achieving interoperability in event logs and event streams. In: IEEE Std 1849–2016, pp. 1–50 (2016)
Kharbili, M.E., Ma, Q., Kelsen, P., Pulvermueller, E.: CoReL: policy-based and model-driven regulatory compliance management. In: IEEE 15th International Enterprise Distributed Object Computing Conference, IEEE, August 2011
Khasawneh, T.N., AL-Sahlee, M.H., Safia, A.A.: Sql, newsql, and nosql databases: a comparative survey. In: 2020 11th International Conference on Information and Communication Systems (ICICS), pp. 013–021 (2020)
Knuplesch, D., Reichert, M.: A visual language for modeling multiple perspectives of business process compliance rules. Softw. Syst. Model. 16(3), 715–736 (2016). https://doi.org/10.1007/s10270-016-0526-0
Knuplesch, D., Reichert, M., Ly, L.T., Kumar, A., Rinderle-Ma, S.: Visual modeling of business process compliance rules with the support of multiple perspectives. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 106–120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_10
Mariscal, G., Marbán, O., Fernández, C.: A survey of data mining and knowledge discovery process models and methodologies. Knowl. Eng. Rev. 25(2), 137–166 (2010)
Papazoglou, M.P.: Making business processes compliant to standards and regulations. In: 15th International Enterprise Distributed Object Computing Conference, IEEE, August 2011
Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehouse. 5(4), 13–22 (2000)
Sumathi, S., Sivanandam, S.N.: Introduction to Data Mining and its Applications, Studies in Computational Intelligence, vol. 29. Springer, Berlin (2006)
Tepandi, J., et al.: The Data Quality Framework for the Estonian Public Sector and Its Evaluation. In: Hameurlain, A., Küng, J., Wagner, R., Sakr, S., Razzak, I., Riyad, A. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXV. Lecture Notes in Computer Science(), vol. 10680, pp. 1–26. Springer, Berlin (2017). https://doi.org/10.1007/978-3-662-56121-8_1
Valverde, M.C., Vallespir, D., Marotta, A., Panach, J.I.: Applying a data quality model to experiments in software engineering. In: Indulska, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8823, pp. 168–177. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12256-4_18
Verhulst, R.: Evaluating quality of event data within event logs:an extensible framework. Master’s thesis, Eindhoven University of Technology (2016)
Acknowledgement
We would like to thank students: Alexis Artus, Andrés Borges, Federico Pérez, Francisco Betancor, Fabián Gambetta, Juan Canaparo, Martín Rubio, for their work in the PRICED framework and prototypes.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Delgado, A., Calegari, D., Marotta, A., González, L., Tansini, L. (2022). A Methodology for Organizational Data Science Towards Evidence-based Process Improvement. In: Fill, HG., van Sinderen, M., Maciaszek, L.A. (eds) Software Technologies. ICSOFT 2021. Communications in Computer and Information Science, vol 1622. Springer, Cham. https://doi.org/10.1007/978-3-031-11513-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-11513-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11512-7
Online ISBN: 978-3-031-11513-4
eBook Packages: Computer ScienceComputer Science (R0)