Skip to main content

A Methodology for Organizational Data Science Towards Evidence-based Process Improvement

  • Conference paper
  • First Online:
Software Technologies (ICSOFT 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1622))

Included in the following conference series:

  • 326 Accesses

Abstract

Organizational data science projects provide organizations with evidence-based business intelligence to improve their business processes (BPs). They require methodological guidance and tool support to deal with the complexity of the socio-technical system that supports the organization’s daily operations. This system is usually composed of distributed infrastructures integrating heterogeneous technologies enacting BPs and connecting devices, people, and data. Obtaining knowledge from this context is challenging since it requires a unified view capturing all the pieces of data consistently for applying both process mining and data mining techniques to get a complete understanding of the BPs execution. We have presented the PRICED framework in previous works, which defines a general strategy for performing data science projects. In this paper, we propose a methodology with phases, disciplines, activities, roles, and artifacts, providing guidance and support to navigate from getting the execution data, through its integration and quality assessment, to mining and analyzing it to find improvement opportunities.

Supported by project “Minería de procesos y datos para la mejora de procesos en las organizaciones” funded by Comisión Sectorial de Investigación Científica, Universidad de la República, Uruguay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.activiti.org/.

  2. 2.

    https://www.postgresql.org/.

  3. 3.

    https://fluxicon.com/disco/.

  4. 4.

    https://www.promtools.org/.

  5. 5.

    https://www.hitachivantara.com/en-us/products/data-management-analytics/pentaho-platform.html.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd Edn. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49851-4

  2. Artus, A., Borges, A., Calegari, D., Delgado, A.: Integrated process data and organizational data analysis for business process improvement. In: Golfarelli, M., Wrembel, R., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2021. LNCS, vol. 12925, pp. 207–215. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86534-4_19

    Chapter  Google Scholar 

  3. Batini, C., Scannapieco, M.: Data and Information Quality. DSA, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24106-7

    Book  MATH  Google Scholar 

  4. Betancor, F., Pérez, F., Marotta, A., Delgado, A.: Business process and organizational data quality model (BPODQM) for integrated process and data mining. In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins, P., Pérez-Castillo, R. (eds.) QUATIC 2021. CCIS, vol. 1439, pp. 431–445. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85347-1_31

    Chapter  Google Scholar 

  5. Birukou, A., D’Andrea, V., Leymann, F., Serafinski, J., Silveira, P., Strauch, S., Tluczek, M.: An integrated solution for runtime compliance governance in SOA. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 122–136. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17358-5_9

    Chapter  Google Scholar 

  6. Bose, R.P.J.C., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining results? In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 127–134 (2013)

    Google Scholar 

  7. Brachman, R.J., Anand, T.: The process of knowledge discovery in databases. In: Advances in Knowledge Discovery and Data Mining, pp. 37–57. MIT Press, Cambridge (1996)

    Google Scholar 

  8. Calegari, D., Delgado, A., Artus, A., Borges, A.: Integration of business process and organizational data for evidence-based business intelligence. CLEI Electron. J. 24(2), 7:1-7:19 (2021)

    Article  Google Scholar 

  9. Chang, J.: Business Process Management Systems: Strategy and Implementation. CRC Press, Boca Raton (2016)

    Google Scholar 

  10. Cristalli, E., Serra, F., Marotta, A.: Data quality evaluation in document oriented data stores. In: Woo, C., Lu, J., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11158, pp. 309–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01391-2_35

    Chapter  Google Scholar 

  11. Delgado, A., Calegari, D.: Towards a unified vision of business process and organizational data. In: XLVI Latin American Computing Conference (CLEI), pp. 108–117. IEEE (2020)

    Google Scholar 

  12. Delgado, A., Calegari, D.: Discovery and analysis of e-government business processes with process mining: a case study. In: 55th Hawaii International Conference on System Sciences, (HICSS) (2022)

    Google Scholar 

  13. Delgado, A., Calegari D., Arrigoni A.: Towards a generic BPMS user portal definition for the execution of business processes. In: XLII Latin American Computer Conference - Selected Papers, CLEI 2016 Selected Papers, Valparaiso, Chile, 10–14 October 2016, pp. 39–59. Elsevier (2016)

    Google Scholar 

  14. Delgado, A., Calegari, D., Marotta, A., González, L., Tansini, L.: A methodology for integrated process and data mining and analysis towards evidence-based process improvement. In: Proceedings of the 16th International Conference on Software Technologies (ICSOFT), pp. 426–437. ScitePress (2021)

    Google Scholar 

  15. Delgado, A., Marotta, A., González, L., Tansini, L., Calegari, D.: Towards a data science framework integrating process and data mining for organizational improvement. In: 15th International Conference on Software Technologies (ICSOFT), pp. 492–500. ScitePress (2020)

    Google Scholar 

  16. Delgado, A., Weber, B., Ruiz, F., de Guzmán, I.G.R., Piattini, M.: An integrated approach based on execution measures for the continuous improvement of business processes realized by services. Inf. Softw. Technol. 56(2), 134–162 (2014)

    Article  Google Scholar 

  17. Dumas, M., van der Aalst, W.M., ter Hofstede, A.H.: Process-Aware Information Systems: Bridging People and Software through Process Technology. Wiley, Hoboken (2005)

    Google Scholar 

  18. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_19

    Chapter  Google Scholar 

  19. González, L., Delgado, A.: Towards compliance requirements modeling and evaluation of e-government inter-organizational collaborative business processes. In: 54th Hawaii International Conference on System Sciences, (HICSS), pp. 1–10. ScholarSpace (2021)

    Google Scholar 

  20. González, L., Delgado, A.: Compliance requirements model for collaborative business process and evaluation with process mining. In: XLVII Latin American Computing Conference (CLEI) (2021)

    Google Scholar 

  21. Hashmi, M., Governatori, G., Lam, H.P., Wynn, M.T.: Are we done with business process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1), 79–133 (2018)

    Article  Google Scholar 

  22. Hecht, R., Jablonski, S.: Nosql evaluation: a use case oriented survey. In: 2011 International Conference on Cloud and Service Computing, pp. 336–341 (2011)

    Google Scholar 

  23. IEEE: Task Force on Data Science and Advanced Analytics. http://www.dsaa.co/

  24. IEEE: IEEE standard for extensible event stream (XES) for achieving interoperability in event logs and event streams. In: IEEE Std 1849–2016, pp. 1–50 (2016)

    Google Scholar 

  25. Kharbili, M.E., Ma, Q., Kelsen, P., Pulvermueller, E.: CoReL: policy-based and model-driven regulatory compliance management. In: IEEE 15th International Enterprise Distributed Object Computing Conference, IEEE, August 2011

    Google Scholar 

  26. Khasawneh, T.N., AL-Sahlee, M.H., Safia, A.A.: Sql, newsql, and nosql databases: a comparative survey. In: 2020 11th International Conference on Information and Communication Systems (ICICS), pp. 013–021 (2020)

    Google Scholar 

  27. Knuplesch, D., Reichert, M.: A visual language for modeling multiple perspectives of business process compliance rules. Softw. Syst. Model. 16(3), 715–736 (2016). https://doi.org/10.1007/s10270-016-0526-0

    Article  Google Scholar 

  28. Knuplesch, D., Reichert, M., Ly, L.T., Kumar, A., Rinderle-Ma, S.: Visual modeling of business process compliance rules with the support of multiple perspectives. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 106–120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_10

    Chapter  Google Scholar 

  29. Mariscal, G., Marbán, O., Fernández, C.: A survey of data mining and knowledge discovery process models and methodologies. Knowl. Eng. Rev. 25(2), 137–166 (2010)

    Article  Google Scholar 

  30. Papazoglou, M.P.: Making business processes compliant to standards and regulations. In: 15th International Enterprise Distributed Object Computing Conference, IEEE, August 2011

    Google Scholar 

  31. Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehouse. 5(4), 13–22 (2000)

    Google Scholar 

  32. Sumathi, S., Sivanandam, S.N.: Introduction to Data Mining and its Applications, Studies in Computational Intelligence, vol. 29. Springer, Berlin (2006)

    Google Scholar 

  33. Tepandi, J., et al.: The Data Quality Framework for the Estonian Public Sector and Its Evaluation. In: Hameurlain, A., Küng, J., Wagner, R., Sakr, S., Razzak, I., Riyad, A. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXV. Lecture Notes in Computer Science(), vol. 10680, pp. 1–26. Springer, Berlin (2017). https://doi.org/10.1007/978-3-662-56121-8_1

  34. Valverde, M.C., Vallespir, D., Marotta, A., Panach, J.I.: Applying a data quality model to experiments in software engineering. In: Indulska, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8823, pp. 168–177. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12256-4_18

    Chapter  Google Scholar 

  35. Verhulst, R.: Evaluating quality of event data within event logs:an extensible framework. Master’s thesis, Eindhoven University of Technology (2016)

    Google Scholar 

Download references

Acknowledgement

We would like to thank students: Alexis Artus, Andrés Borges, Federico Pérez, Francisco Betancor, Fabián Gambetta, Juan Canaparo, Martín Rubio, for their work in the PRICED framework and prototypes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Delgado, A., Calegari, D., Marotta, A., González, L., Tansini, L. (2022). A Methodology for Organizational Data Science Towards Evidence-based Process Improvement. In: Fill, HG., van Sinderen, M., Maciaszek, L.A. (eds) Software Technologies. ICSOFT 2021. Communications in Computer and Information Science, vol 1622. Springer, Cham. https://doi.org/10.1007/978-3-031-11513-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11513-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11512-7

  • Online ISBN: 978-3-031-11513-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics