Skip to main content

Towards Power Consumption Optimization for Embedded Systems from a Model-driven Software Development Perspective

  • Conference paper
  • First Online:
Software Technologies (ICSOFT 2021)

Abstract

A power consumption optimization for battery-powered and resource-constrained embedded systems is typically performed on the hardware layer while the application layer is often neglected. Because software applications affect the hardware behavior directly, power-related optimizations can result in major application design and workflow changes. Such in-depth modifications should be considered in early design phases, where they are most effective. For embedded software development, current trends in software engineering such as Model-Driven Development (MDD) can be used for an early power consumption analysis and optimization even if the hardware platform is not yet finalized. However, power consumption aspects on the application layer are currently not sufficiently considered in MDD. In this paper, we present an approach to abstract hardware components of an embedded system using the Unified Modeling Language (UML) and annotate UML-based models with power characteristics. Additionally, we define a novel UML profile to capture the dynamic behavior of hardware components while interacting with software applications. With our approach, energy profiles can be derived to make the impact of software on power consumption in early design stages visible. Energy profiles are also suitable for software optimization and energy bug detection, which is demonstrated using a sensor node use case example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To improve readability, the abbr. IBM Rhapsody is used for the rest of this article.

  2. 2.

    For a better readability, the shortened notation (value|exprunit) is used in the following sections.

  3. 3.

    https://github.com/BoschSensortec/BME280_driver.

References

  1. Abd El-Mawla, N., Badawy, M., Arafat, H.: IoT for the failure of climate-change mitigation and adaptation and IIoT as a future solution. World J. Environ. Eng. 6(1), 7–16 (2019). https://doi.org/10.12691/wjee-6-1-2

  2. Andrade, E., Maciel, P., Falcão, T., Nogueira, B., Araujo, C., Callou, G.: Performance and energy consumption estimation for commercial off-the-shelf component system design. Innovations Syst. Softw. Eng. 6(1–2), 107–114 (2010). https://doi.org/10.1007/s11334-009-0110-7

    Article  Google Scholar 

  3. Arpinen, T., Salminen, E., Hämäläinen, T.D., Hännikäinen, M.: Marte profile extension for modeling dynamic power management of embedded systems. J. Syst. Archit. 58(5), 209–219 (2012). https://doi.org/10.1016/j.sysarc.2011.01.003

    Article  Google Scholar 

  4. Atitallah, Y.B., Mottin, J., Hili, N., Ducroux, T., Godet-Bar, G.: A power consumption estimation approach for embedded software design using trace analysis. In: Proceedings of the 41st Euromicro Conference on Software Engineering and Advanced Applications, Madeira, Portugal, 26–28 August 2015, pp. 61–68 (2015). https://doi.org/10.1109/SEAA.2015.34

  5. Banerjee, A., Chattopadhyay, S., Roychoudhury, A.: On testing embedded software. In: Advances in Computers, vol. 101, pp. 121–153. Elsevier (2016)

    Google Scholar 

  6. Banerjee, A., Chong, L.K., Chattopadhyay, S., Roychoudhury, A.: Detecting energy bugs and hotspots in mobile apps. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2014, Hong Kong, China, 16–21 November 2014, pp. 588–598 (2014). https://doi.org/10.1145/2635868.2635871. ISBN 978-1-450-33056-5

  7. Benini, L., Bogliolo, A., de Micheli, G.: A survey of design techniques for system-level dynamic power management. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 8(3), 299–316 (2000). https://doi.org/10.1109/92.845896

  8. Bosch Sensortec GmbH: BME280 - Data sheet, Version 1.9. Document Number BST-BME280-DS001-18. https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf (2020). Accessed 09 Jul 2021

  9. Bouguera, T., Diouris, J.F., Chaillout, J.J., Jaouadi, R., Andrieux, G.: Energy consumption model for sensor nodes based on LoRa and LoRaWAN. Sensors 18(7), 2104 (2018)

    Article  Google Scholar 

  10. Caplat, G., Sourrouille, J.L.: Considerations about model mapping. In: Bezivin, J., Gogolla, M. (eds.) Workshop in Software Model Engineering (WiSME) at the 6th International Conference of the Unified Modeling Language, Modeling Languages and Applications (UML 2003), San Francisco, CA, USA, 21 October 2003

    Google Scholar 

  11. Cisco Systems: Cisco annual internet report (2018–2023). White Paper C11–741490-01. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (2020)

  12. Danese, A., Pravadelli, G., Zandonà, I.: Automatic generation of power state machines through dynamic mining of temporal assertions. In: Proceedings of the 2016 Conference on Design, Automation & Test in Europe, Dresden, Germany, DATE 2016, 14–18 March 2016, pp. 606–611. EDA Consortium, San Jose (2016). ISBN 9783981537062

    Google Scholar 

  13. Douglass, B.P.: Design Patterns for Embedded Systems in C: An Embedded Software Engineering Toolkit. Newnes/Elsevier, Oxford and Burlington (2011)

    Google Scholar 

  14. Elijah, O., Rahman, T.A., Orikumhi, I., Leow, C.Y., Hindia, M.N.: An overview of internet of things (IoT) and data analytics in agriculture: benefits and challenges. IEEE Internet Things J. 5(5), 3758–3773 (2018)

    Article  Google Scholar 

  15. Friedli, M., Kaufmann, L., Paganini, F., Kyburz, R.: Energy efficiency of the internet of things: technology and energy assessment report prepared for IEA 4e EDNA (2016). https://www.iea-4e.org/document/384/energy-efficiency-of-the-internet-of-things-technology-and-energy-assessment-report

  16. Georgiou, K., Xavier-de Souza, S., Eder, K.: The IoT energy challenge: a software perspective. IEEE Embed. Syst. Lett. 10(3), 53–56 (2018)

    Article  Google Scholar 

  17. Gomez, C., DeAntoni, J., Mallet, F.: Multi-view power modeling based on UML, MARTE and SysML. In: Proceedings of the 2012 38th Euromicro Conference on Software Engineering and Advanced Applications, Cesme, Turkey, 05–08 September 2012, pp. 17–20 (2012). https://doi.org/10.1109/SEAA.2012.66

  18. Gries, M.: Methods for evaluating and covering the design space during early design development. Integr. VLSI J. 38(2), 131–183 (2004). https://doi.org/10.1016/j.vlsi.2004.06.001

    Article  Google Scholar 

  19. Grunwald, A., Schaarschmidt, M., Westerkamp, C.: LoRaWAN in a rural context: Use cases and opportunities for agricultural businesses. In: Roer, P. (ed.) Proceedings of the Mobile Communication-Technologies and Applications; 24. ITG-Symposium, ITG-Fachbericht, 15–16 May 2019, pp. 134–139. VDE-Verl. GmbH, Osnabrück, Germany (2019)

    Google Scholar 

  20. Gupta, A., Tsai, T., Rueb, D., Yamaji, M., Middleton, P.: Forecast: internet of things: endpoints and associated services, worldwide, vol. 2017 (2017). https://www.gartner.com/en/documents/3840665/forecast-internet-of-things-endpoints-and-associated-ser

  21. Hagner, M., Aniculaesei, A., Goltz, U.: UML-based analysis of power consumption for real-time embedded systems. In: Proceedings of the 10th International Conference on Trust, Security and Privacy in Computing and Communications, 16–18 November 2011, pp. 1196–1201. IEEE, Changsha, HN,China (2011). https://doi.org/10.1109/TrustCom.2011.161. ISBN 978-1-4577-2135-9

  22. Holst, A.: Number of internet of things (IoT) connected devices worldwide from 2019 to 2030 (2021). https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

  23. Holst, A.: Number of internet of things (IoT) connected devices worldwide from 2019 to 2030, by communications technology (2021). https://www.statista.com/statistics/1194688/iot-connected-devices-communications-technology/

  24. IBM: IBM Engineering Systems Design Rhapsody - Developer (2021). https://www.ibm.com/products/uml-tools. Accessed 12 July 2021

  25. IEEE SA: IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool Flows. Document Number IEEE 1685–2014. https://standards.ieee.org/standard/1685-2014.html (2014)

  26. Iyenghar, P., Pulvermueller, E.: A model-driven workflow for energy-aware scheduling analysis of IoT-enabled use cases. IEEE Internet Things J. 5(6), 4914–4925 (2018). https://doi.org/10.1109/JIOT.2018.2879746

    Article  Google Scholar 

  27. Julien, N., Laurent, J., Senn, E., Martin, E.: Power consumption modeling and characterization of the TI c6201. IEEE Micro 23(5), 40–49 (2003). https://doi.org/10.1109/MM.2003.1240211

    Article  Google Scholar 

  28. Martinez, B., Monton, M., Vilajosana, I., Prades, J.D.: The power of models: modeling power consumption for IoT devices. IEEE Sens. J. 15(10), 5777–5789 (2015). https://doi.org/10.1109/JSEN.2015.2445094

    Article  Google Scholar 

  29. Nurseitov, N., Paulson, M., Reynolds, R., Izurieta, C.: Comparison of JSON and XML data interchange formats: a case study. In: Che, D. (ed.) Proceedings of the 22nd International Conference on Computer Applications in Industry and Engineering (CAINE), 4–6 November 2009, pp. 157–162. ISCA, San Francisco, CA, USA (2009)

    Google Scholar 

  30. NXP Semiconductors: LPC5411x - Product data sheet, Rev. 2.5. Document identifier LPC5411x. https://www.nxp.com/docs/en/data-sheet/LPC5411X.pdf (2019). Accessed 07 Sep 2021

  31. Object Management Group: Unified Modeling Language, Version 2.5.1. OMG Document Number formal/17-12-05. https://www.omg.org/spec/UML/2.5.1/ (2017)

  32. Object Management Group: A UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded Systems, Version 1.2. OMG Document Number formal/19-04-01. https://www.omg.org/spec/MARTE/1.2/ (2019). Accessed 07 Sep 09 2021

  33. Object Management Group (gG): Model Driven Architecture (MDA): MDA Guide rev. 2.0. OMG Document Number ormsc/2014-06-01. https://www.omg.org/cgi-bin/doc?ormsc/14-06-01 (2014). Accessed 07 Sep 2021

  34. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know about software energy consumption? IEEE Softw. 33(3), 83–89 (2016)

    Article  Google Scholar 

  35. Pathak, A., Hu, Y.C., Zhang, M.: Bootstrapping energy debugging on smartphones: a first look at energy bugs in mobile devices. In: Proceedings of the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, Cambridge, MA, USA, 14–15 November 2011, 6 p. (2011). https://doi.org/10.1145/2070562.2070567. Article No. 5. ISBN 978-1-4503-1059-8

  36. Pinto, G., Castor, F., Liu, Y.D.: Mining questions about software energy consumption. In: Proceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014, 31 May–1 June 2014, pp. 22–31. ACM, Hyderabad, India (2014). https://doi.org/10.1145/2597073.2597110. ISBN 978-1-4503-2863-0

  37. Schaarschmidt., M., Uelschen., M., Pulvermüller., E.: Power consumption estimation in model driven software development for embedded systems. In: Proceedings of the 16th International Conference on Software Technologies - ICSOFT, 6–8 July 2021, pp. 47–58. INSTICC, SciTePress, Online Streaming (2021). https://doi.org/10.5220/0010522700470058. ISBN 978-989-758-523-4. ISSN 2184-2833

  38. Schaarschmidt, M., Uelschen, M., Pulvermüller, E., Westerkamp, C.: Framework of software design patterns for energy-aware embedded systems. In: Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering - ENASE, 5–6 May 2020, pp. 62–73. INSTICC, SciTePress, Online Streaming (2020). https://doi.org/10.5220/0009351000620073. ISBN 978-989-758-421-3, ISSN 2184-4895

  39. Selic, B., Gérard, S.: Modeling and analysis of real-time and embedded systems with UML and MARTE: Developing cyber-physical systems. Morgan Kaufmann, Waltham (2014)

    Google Scholar 

  40. Silicon Labs: Energy debugging tools for embedded applications. Technical Report (2010)

    Google Scholar 

  41. SparxSystems: Enterprise architect (2020). https://sparxsystems.com/products/ea/index.html. Accessed 12 Jul 2021

  42. Tan, T.K., Raghunathan, A., Jha, N.K.: Software architectural transformations: a new approach to low energy embedded software. In: Design, Automation, and Test in Europe Conference and Exhibition, 7 March 2003, pp. 1046–1051. IEEE Computer Society, Munich, Germany (2003). https://doi.org/10.1109/DATE.2003.1253742. ISBN 978-0-7695-1870-1

  43. The MathWorks Inc: MATLAB (2021). https://www.mathworks.com/products/matlab. Accessed 12 Jul 2021

  44. Vuran, M.C., Salam, A., Wong, R., Irmak, S.: Internet of underground things in precision agriculture: architecture and technology aspects. Ad Hoc Netw. 81, 160–173 (2018). https://doi.org/10.1016/j.adhoc.2018.07.017

    Article  Google Scholar 

  45. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  46. Zhou, H.Y., Luo, D.Y., Gao, Y., Zuo, D.C.: Modeling of node energy consumption for wireless sensor networks. Wirel. Sens. Netw. 03(01), 18–23 (2011). https://doi.org/10.4236/wsn.2011.31003

    Article  Google Scholar 

  47. Zhu, Z., Olutunde Oyadiji, S., He, H.: Energy awareness workflow model for wireless sensor nodes. Wirel. Commun. Mob. Comput. 14(17), 1583–1600 (2014). https://doi.org/10.1002/wcm.2302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Schaarschmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schaarschmidt, M., Uelschen, M., Pulvermüller, E. (2022). Towards Power Consumption Optimization for Embedded Systems from a Model-driven Software Development Perspective. In: Fill, HG., van Sinderen, M., Maciaszek, L.A. (eds) Software Technologies. ICSOFT 2021. Communications in Computer and Information Science, vol 1622. Springer, Cham. https://doi.org/10.1007/978-3-031-11513-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11513-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11512-7

  • Online ISBN: 978-3-031-11513-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics