Skip to main content

Walk This Way!

Entity Walks and Property Walks for RDF2vec

  • Conference paper
  • First Online:
The Semantic Web: ESWC 2022 Satellite Events (ESWC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13384))

Included in the following conference series:

Abstract

RDF2vec is a knowledge graph embedding mechanism which first extracts sequences from knowledge graphs by performing random walks, then feeds those into the word embedding algorithm word2vec for computing vector representations for entities. In this poster, we introduce two new flavors of walk extraction coined e-walks and p-walks, which put an emphasis on the structure or the neighborhood of an entity respectively, and thereby allow for creating embeddings which focus on similarity or relatedness. By combining the walk strategies with order-aware and classic RDF2vec, as well as CBOW and skip-gram word2vec embeddings, we conduct a preliminary evaluation with a total of 12 RDF2vec variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We generated 500 walks per node with a depth of 4, i.e., we perform 4 node hops. All embeddings are trained with a dimensionality of 200. The experiments were performed with jRDF2vec (https://github.com/dwslab/jRDF2Vec), which implements all the different variants used in this paper.

  2. 2.

    http://kgvec2go.org/download.html.

  3. 3.

    https://www.dbpedia.org/blog/snapshot-2021-09-release/.

  4. 4.

    For solving an analogy task like Paris is to France like Berlin is to X, X must be similar to France, as well as related to Berlin.

References

  1. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Biased graph walks for RDF graph embeddings. In: WIMS, pp. 1–12 (2017)

    Google Scholar 

  2. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. NIPS 26 (2013)

    Google Scholar 

  3. Pellegrino, M.A., Altabba, A., Garofalo, M., Ristoski, P., Cochez, M.: GEval: a modular and extensible evaluation framework for graph embedding techniques. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 565–582. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_33

    Chapter  Google Scholar 

  4. Portisch, J., Heist, N., Paulheim, H.: Knowledge graph embedding for data mining vs. knowledge graph embedding for link prediction–two sides of the same coin? Semantic Web (to appear) (2022)

    Google Scholar 

  5. Portisch, J., Hladik, M., Paulheim, H.: KGvec2go–knowledge graph embeddings as a service. In: LREC 2020, pp. 5641–5647. ELRA (2020)

    Google Scholar 

  6. Portisch, J., Paulheim, H.: Putting RDF2Vec in order. In: ISWC 2021 Posters and Demos (2021)

    Google Scholar 

  7. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30

    Chapter  Google Scholar 

  8. Vandewiele, G., et al.: Walk extraction strategies for node embeddings with RDF2Vec in knowledge graphs. In: Workshop on Machine Learning and Knowledge Graphs (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Portisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Portisch, J., Paulheim, H. (2022). Walk This Way!. In: Groth, P., et al. The Semantic Web: ESWC 2022 Satellite Events. ESWC 2022. Lecture Notes in Computer Science, vol 13384. Springer, Cham. https://doi.org/10.1007/978-3-031-11609-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11609-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11608-7

  • Online ISBN: 978-3-031-11609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics