Abstract
We propose a simple but effective method to recommend exercises with high quality and diversity for students. Our method is made up of three key components: (1) candidate generation module; (2) diversity-promoting module; and (3) scope restriction module. The proposed method improves the overall recommendation performance in terms of recall, and increases the diversity of the recommended candidates by 0.81% compared to the baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Barria-Pineda, J., Akhuseyinoglu, K., Želem-Ćelap, S., Brusilovsky, P., Milicevic, A.K., Ivanovic, M.: Explainable recommendations in a personalized programming practice system. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds.) AIED 2021. LNCS (LNAI), vol. 12748, pp. 64–76. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78292-4_6
Chen, J., Li, H., Ding, W., Liu, Z.: An educational system for personalized teacher recommendation in K-12 online classrooms. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds.) AIED 2021. LNCS (LNAI), vol. 12749, pp. 104–108. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78270-2_18
Eksombatchai, C., et al.: Pixie: a system for recommending 3+ billion items to 200+ million users in real-time. In: WWW, pp. 1775–1784 (2018)
Huang, Z., Liu, Q., Zhai, C., Yin, Y., Chen, E., Gao, W., Hu, G.: Exploring multi-objective exercise recommendations in online education systems. In: CIKM, pp. 1261–1270 (2019)
Li, J., Galley, M., Brockett, C., Gao, J., Dolan, W.B.: A diversity-promoting objective function for neural conversation models. In: NAACL, pp. 110–119 (2016)
Liu, T., Wang, Z., Tang, J., Yang, S., Huang, G.Y., Liu, Z.: Recommender systems with heterogeneous side information. In: WWW, pp. 3027–3033 (2019)
Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Mohseni, M., Maher, M.L., Grace, K., Najjar, N., Abbas, F., Eltayeby, O.: Pique: recommending a personalized sequence of research papers to engage student curiosity. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11626, pp. 201–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23207-8_38
Pang, Y., Jin, Y., Zhang, Y., Zhu, T.: Collaborative filtering recommendation for MOOC application. Comput. App. Eng. Educ. 25(1), 120–128 (2017)
Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Mining Knowl. Disc. 5(1), 115–153 (2001)
Van Asch, V.: Macro-and micro-averaged evaluation measures. CLiPS 49, Belgium (2013)
Wan, S., Niu, Z.: An e-learning recommendation approach based on the self-organization of learning resource. Knowl. Based Syst. 160, 71–87 (2018)
Wang, S., Wu, H., Kim, J.H., Andersen, E.: Adaptive learning material recommendation in online language education. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11626, pp. 298–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23207-8_55
Xu, G., Jia, G., Shi, L., Zhang, Z.: Personalized course recommendation system fusing with knowledge graph and collaborative filtering. Comput. Intell. Neurosci. 2021, 9590502 (2021)
Yan, Y., Liu, Z., Zhao, M., Guo, W., Yan, W.P., Bao, Y.: A practical deep online ranking system in e-commerce recommendation. In: Brefeld, U.U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 186–201. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_12
Yang, D., Piergallini, M., Howley, I., Rose, C.: Forum thread recommendation for massive open online courses. In: EDM 2014. Citeseer (2014)
Acknowledgements
This work was supported in part by National Key R &D Program of China, under Grant No. 2020AAA0104500; in part by Beijing Nova Program (Z201100006820068) from Beijing Municipal Science & Technology Commission and in part by NFSC under Grant No. 61877029.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, S., Liu, Q., Chen, J., Hu, X., Liu, Z., Luo, W. (2022). A Design of a Simple Yet Effective Exercise Recommendation System in K-12 Online Learning. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds) Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium. AIED 2022. Lecture Notes in Computer Science, vol 13356. Springer, Cham. https://doi.org/10.1007/978-3-031-11647-6_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-11647-6_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-11646-9
Online ISBN: 978-3-031-11647-6
eBook Packages: Computer ScienceComputer Science (R0)