Skip to main content

Abstract

We propose a simple but effective method to recommend exercises with high quality and diversity for students. Our method is made up of three key components: (1) candidate generation module; (2) diversity-promoting module; and (3) scope restriction module. The proposed method improves the overall recommendation performance in terms of recall, and increases the diversity of the recommended candidates by 0.81% compared to the baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.xesvip.com/.

References

  1. Barria-Pineda, J., Akhuseyinoglu, K., Želem-Ćelap, S., Brusilovsky, P., Milicevic, A.K., Ivanovic, M.: Explainable recommendations in a personalized programming practice system. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds.) AIED 2021. LNCS (LNAI), vol. 12748, pp. 64–76. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78292-4_6

    Chapter  Google Scholar 

  2. Chen, J., Li, H., Ding, W., Liu, Z.: An educational system for personalized teacher recommendation in K-12 online classrooms. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds.) AIED 2021. LNCS (LNAI), vol. 12749, pp. 104–108. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78270-2_18

    Chapter  Google Scholar 

  3. Eksombatchai, C., et al.: Pixie: a system for recommending 3+ billion items to 200+ million users in real-time. In: WWW, pp. 1775–1784 (2018)

    Google Scholar 

  4. Huang, Z., Liu, Q., Zhai, C., Yin, Y., Chen, E., Gao, W., Hu, G.: Exploring multi-objective exercise recommendations in online education systems. In: CIKM, pp. 1261–1270 (2019)

    Google Scholar 

  5. Li, J., Galley, M., Brockett, C., Gao, J., Dolan, W.B.: A diversity-promoting objective function for neural conversation models. In: NAACL, pp. 110–119 (2016)

    Google Scholar 

  6. Liu, T., Wang, Z., Tang, J., Yang, S., Huang, G.Y., Liu, Z.: Recommender systems with heterogeneous side information. In: WWW, pp. 3027–3033 (2019)

    Google Scholar 

  7. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  8. Mohseni, M., Maher, M.L., Grace, K., Najjar, N., Abbas, F., Eltayeby, O.: Pique: recommending a personalized sequence of research papers to engage student curiosity. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11626, pp. 201–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23207-8_38

    Chapter  Google Scholar 

  9. Pang, Y., Jin, Y., Zhang, Y., Zhu, T.: Collaborative filtering recommendation for MOOC application. Comput. App. Eng. Educ. 25(1), 120–128 (2017)

    Article  Google Scholar 

  10. Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Mining Knowl. Disc. 5(1), 115–153 (2001)

    Article  Google Scholar 

  11. Van Asch, V.: Macro-and micro-averaged evaluation measures. CLiPS 49, Belgium (2013)

    Google Scholar 

  12. Wan, S., Niu, Z.: An e-learning recommendation approach based on the self-organization of learning resource. Knowl. Based Syst. 160, 71–87 (2018)

    Article  Google Scholar 

  13. Wang, S., Wu, H., Kim, J.H., Andersen, E.: Adaptive learning material recommendation in online language education. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11626, pp. 298–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23207-8_55

    Chapter  Google Scholar 

  14. Xu, G., Jia, G., Shi, L., Zhang, Z.: Personalized course recommendation system fusing with knowledge graph and collaborative filtering. Comput. Intell. Neurosci. 2021, 9590502 (2021)

    Google Scholar 

  15. Yan, Y., Liu, Z., Zhao, M., Guo, W., Yan, W.P., Bao, Y.: A practical deep online ranking system in e-commerce recommendation. In: Brefeld, U.U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 186–201. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_12

    Chapter  Google Scholar 

  16. Yang, D., Piergallini, M., Howley, I., Rose, C.: Forum thread recommendation for massive open online courses. In: EDM 2014. Citeseer (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key R &D Program of China, under Grant No. 2020AAA0104500; in part by Beijing Nova Program (Z201100006820068) from Beijing Municipal Science & Technology Commission and in part by NFSC under Grant No. 61877029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zitao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S., Liu, Q., Chen, J., Hu, X., Liu, Z., Luo, W. (2022). A Design of a Simple Yet Effective Exercise Recommendation System in K-12 Online Learning. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds) Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium. AIED 2022. Lecture Notes in Computer Science, vol 13356. Springer, Cham. https://doi.org/10.1007/978-3-031-11647-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11647-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11646-9

  • Online ISBN: 978-3-031-11647-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics