Skip to main content

Extraction of Software Product Line Architectures from Many System Variants

  • Chapter
  • First Online:
Handbook of Re-Engineering Software Intensive Systems into Software Product Lines

Abstract

Software Product Line Architecture (SPLA) describes the architecture of a set of software variants by describing (1) what components can be included in the product configuration based on the selected features of this product (2) how these components can be configured to form a concrete architecture of the product, (3) shared components, and (4) individual architecture characteristics of each product. However, developing SPLA from scratch is known a highly, costly and risky task. The alternative is to exploit the already developed legacy software variants to reverse engineer SPLA. This reduces the cost of Software Product Line (SPL) development and allows to manage software variants as a SPL. In this chapter, we discuss the extraction of SPLA based on the analysis of several software variants. Precisely, we discuss the variability in SPLA. Then, we discuss challenges in extracting variability of SPLA and highlight a number of good practices proposed in the-state-of-the-art of the SPLA extraction. Next, we discuss one example approach that completely extracts SPLA of software variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the literature, researchers have used many synonyms of extraction like reverse engineering [41], identification [32], mining [45], recovery [36] and reconstruction [34].

References

  1. Abdellatif, M., Shatnawi, A., Mili, H., Moha, N., El Boussaidi, G., Hecht, G., Privat, J., Guéhéneuc, Y.G.: A taxonomy of service identification approaches for legacy software systems modernization. Journal of Systems and Software. Volume 173. (2021)

    Google Scholar 

  2. Allier, S., Sahraoui, H.A., Sadou, S.: Identifying components in object-oriented programs using dynamic analysis and clustering. In: Proceedings of the 2009 Conference of the Center for Advanced Studies on Collaborative Research, pp. 136–148. IBM Corp. (2009)

    Google Scholar 

  3. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wasowski, A.: A survey of variability modeling in industrial practice. In: Proceedings of the Seventh International Workshop on Variability Modelling of Software-intensive Systems, p. 7. ACM (2013)

    Google Scholar 

  4. Businge, J., Openja, M., Nadi, S., Bainomugisha, E., Berger, T.: Clone-based variability management in the android ecosystem. In: 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 625–634. IEEE (2018)

    Google Scholar 

  5. Canal, C., Pimentel, E., Troya, J.M.: Specification and refinement of dynamic software architectures. In: Software Architecture, pp. 107–125. Springer (1999)

    Google Scholar 

  6. Capiluppi, A., Ajienka, N.: National boundaries and semantics of artefacts in open source development. In: 2018 IEEE/ACM 1st International Workshop on Software Health (SoHeal), pp. 33–39. IEEE (2018)

    Google Scholar 

  7. Carbonnel, J., Huchard, M., Miralles, A., Nebut, C.: Feature model composition assisted by formal concept analysis. In: ENASE: Evaluation of Novel Approaches to Software Engineering, pp. 27–37. SciTePress (2017)

    Google Scholar 

  8. Chikofsky, E.J., Cross, J.H., et al.: Reverse engineering and design recovery: A taxonomy. Software, IEEE 7(1), 13–17 (1990)

    Article  Google Scholar 

  9. Clements, P., Northrop, L.: Software product lines: practices and patterns, vol. 3. Addison-Wesley Reading (2002)

    Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT press (2009)

    Google Scholar 

  11. DeBaud, J.M., Flege, O., Knauber, P.: Pulse-dssa-a method for the development of software reference architectures. In: Proceedings of the third international workshop on Software architecture, pp. 25–28. ACM (1998)

    Google Scholar 

  12. Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki, K.: An exploratory study of cloning in industrial software product lines. In: Software Maintenance and Reengineering (CSMR), 2013 17th European Conference on, pp. 25–34. IEEE (2013)

    Google Scholar 

  13. Ducasse, S., Pollet, D.: Software architecture reconstruction: A process-oriented taxonomy. IEEE Transactions on Software Engineering 35(4), 573–591 (2009)

    Article  Google Scholar 

  14. Dugerdil, P., Sennhauser, D.: Dynamic decision tree for legacy use-case recovery. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, pp. 1284–1291. ACM, New York, NY, USA (2013)

    Google Scholar 

  15. Erdemir, U., Tekin, U., Buzluca, F.: Object oriented software clustering based on community structure. In: 2011 18th Asia Pacific Software Engineering Conference (APSEC), pp. 315–321. IEEE (2011)

    Google Scholar 

  16. Fischer, S., Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Enhancing clone-and-own with systematic reuse for developing software variants. In: Software Maintenance and Evolution (ICSME), 2014 IEEE International Conference on, pp. 391–400. IEEE (2014)

    Google Scholar 

  17. Frenzel, P., Koschke, R., Breu, A.P., Angstmann, K.: Extending the reflexion method for consolidating software variants into product lines. In: 14th Working Conference on Reverse Engineering (WCRE), pp. 160–169. IEEE (2007)

    Google Scholar 

  18. Gasparic, M., Janes, A., Sillitti, A., Succi, G.: An analysis of a project reuse approach in an industrial setting. In: Software Reuse for Dynamic Systems in the Cloud and Beyond, pp. 164–171. Springer (2014)

    Google Scholar 

  19. Gomaa, H.: Designing software product lines with UML. In: Software Engineering Workshop - Tutorial Notes, 2005. 29th Annual IEEE/NASA, pp. 160–216 (2005)

    Google Scholar 

  20. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain analysis (FODA) feasibility study. Tech. rep., Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst (1990)

    Book  Google Scholar 

  21. Kang, K.C., Kim, M., Lee, J., Kim, B.: Feature-oriented re-engineering of legacy systems into product line assets–a case study. In: Software Product Lines, pp. 45–56. Springer (2005)

    Google Scholar 

  22. Kolb, R., Muthig, D., Patzke, T., Yamauchi, K.: A case study in refactoring a legacy component for reuse in a product line. In: Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM 2005), pp. 369–378. IEEE (2005)

    Google Scholar 

  23. Kolb, R., Muthig, D., Patzke, T., Yamauchi, K.: Refactoring a legacy component for reuse in a software product line: a case study. Journal of Software Maintenance and Evolution: Research and Practice 18(2), 109–132 (2006)

    Article  Google Scholar 

  24. Koschke, R., Frenzel, P., Breu, A.P., Angstmann, K.: Extending the reflexion method for consolidating software variants into product lines. Software Quality Journal 17(4), 331–366 (2009)

    Article  Google Scholar 

  25. Langelier, G., Sahraoui, H., Poulin, P.: Visualization-based analysis of quality for large-scale software systems. In: Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering, pp. 214–223. ACM (2005)

    Google Scholar 

  26. Lethbridge, T.C., Singer, J., Forward, A.: How software engineers use documentation: The state of the practice. IEEE Software 20(6), 35–39 (2003)

    Article  Google Scholar 

  27. Lima, C., Chavez, C., de Almeida, E.S.: Investigating the recovery of product line architectures: an approach proposal. In: International Conference on Software Reuse, pp. 201–207. Springer (2017)

    Google Scholar 

  28. Liu, C., van Dongen, B., Assy, N., van der Aalst, W.M.: Component interface identification and behavioral model discovery from software execution data. In: Proceedings of the 26th Conference on Program Comprehension, pp. 97–107. ACM (2018)

    Google Scholar 

  29. Luckham, D.: Rapide: A language and toolset for simulation of distributed systems by partial orderings of events. Tech. rep. (1996)

    Google Scholar 

  30. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: ACM SIGSOFT Software Engineering Notes, vol. 21, pp. 3–14. ACM (1996)

    Google Scholar 

  31. Mende, T., Beckwermert, F., Koschke, R., Meier, G.: Supporting the grow-and-prune model in software product lines evolution using clone detection. In: 12th European Conference on Software Maintenance and Reengineering (CSMR), pp. 163–172. IEEE (2008)

    Google Scholar 

  32. Mende, T., Koschke, R., Beckwermert, F.: An evaluation of code similarity identification for the grow-and-prune model. Journal of Software Maintenance and Evolution: Research and Practice 21(2), 143–169 (2009)

    Article  Google Scholar 

  33. Mishra, S., Kushwaha, D.S., Misra, A.K.: Creating reusable software component from object-oriented legacy system through reverse engineering. Journal of object technology 8(5), 133–152 (2009)

    Article  Google Scholar 

  34. Moshkenani, Z.S., Sharafi, S.M., Zamani, B.: Improving naïve bayes classifier for software architecture reconstruction. In: Instrumentation & Measurement, Sensor Network and Automation (IMSNA), 2012 International Symposium on, vol. 2, pp. 383–388. IEEE (2012)

    Google Scholar 

  35. Nakagawa, E.Y., Antonino, P.O., Becker, M.: Reference architecture and product line architecture: A subtle but critical difference. In: European Conference on Software Architecture, pp. 207–211. Springer (2011)

    Google Scholar 

  36. Pinzger, M., Gall, H., Girard, J.F., Knodel, J., Riva, C., Pasman, W., Broerse, C., Wijnstra, J.G.: Architecture recovery for product families. In: Software Product-Family Engineering, pp. 332–351. Springer (2004)

    Google Scholar 

  37. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering, vol. 10. Springer (2005)

    Google Scholar 

  38. Rathee, A., Chhabra, J.K.: A multi-objective search based approach to identify reusable software components. Journal of Computer Languages 52, 26–43 (2019)

    Article  Google Scholar 

  39. Seriai, A., Sadou, S., Sahraoui, H., Hamza, S.: Deriving component interfaces after a restructuring of a legacy system. In: 2014 IEEE/IFIP Conference on Software Architecture (WICSA), pp. 31–40. IEEE (2014)

    Google Scholar 

  40. Shatnawi, A., Mili, H., El Boussaidi, G., Boubaker, A., Guéhéneuc, Y.G., Moha, N., Privat, J., Abdellatif, M.: Analyzing program dependencies in java ee applications. In: Mining Software Repositories (MSR), 2017 IEEE/ACM 14th International Conference on, pp. 64–74. IEEE (2017)

    Google Scholar 

  41. Shatnawi, A., Seriai, A.D., Sahraoui, H.: Recovering software product line architecture of a family of object-oriented product variants. Journal of Systems and Software 131, 325–346 (2017)

    Article  Google Scholar 

  42. Shatnawi, A., Shatnawi, H., Saied, M.A., Shara, Z.A., Sahraoui, H., Seriai, A.: Identifying software components from object-oriented apis based on dynamic analysis. In: Proceedings of the 26th Conference on Program Comprehension, pp. 189–199. ACM (2018)

    Google Scholar 

  43. Weinreich, R., Miesbauer, C., Buchgeher, G., Kriechbaum, T.: Extracting and facilitating architecture in service-oriented software systems. In: 2012 Joint Working IEEE/IFIP Conference on Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), pp. 81–90 (2012)

    Google Scholar 

  44. Wu, Y., Yang, Y., Peng, X., Qiu, C., Zhao, W.: Recovering object-oriented framework for software product line reengineering. In: Top Productivity through Software Reuse, pp. 119–134. Springer (2011)

    Google Scholar 

  45. Yuan, E., Esfahani, N., Malek, S.: Automated mining of software component interactions for self-adaptation. In: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014, pp. 27–36. ACM, New York, NY, USA (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Shatnawi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shatnawi, A., Seriai, AD., Sahraoui, H. (2023). Extraction of Software Product Line Architectures from Many System Variants. In: Lopez-Herrejon, R.E., Martinez, J., Guez Assunção, W.K., Ziadi, T., Acher, M., Vergilio, S. (eds) Handbook of Re-Engineering Software Intensive Systems into Software Product Lines. Springer, Cham. https://doi.org/10.1007/978-3-031-11686-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11686-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11685-8

  • Online ISBN: 978-3-031-11686-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics